
www.manaraa.com

c© 2016 by Dae Hoon Park. All rights reserved.



www.manaraa.com



www.manaraa.com

JOINT ANALYSIS OF USER-GENERATED CONTENT AND PRODUCT
INFORMATION TO ENHANCE USER EXPERIENCE IN E-COMMERCE

BY

DAE HOON PARK

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2016

Urbana, Illinois

Doctoral Committee:

Professor ChengXiang Zhai, Chair
Professor Jiawei Han
Professor Kevin Chen-Chuan Chang
Assistant Professor Yi Fang, Santa Clara University



www.manaraa.com

ProQuest Number:

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that  the author did not send a complete manuscript
and  there  are missing pages, these will be noted. Also, if material had  to be removed,

a note will indicate the deletion.

ProQuest

Published  by ProQuest LLC (  ). Copyright of the Dissertation is held  by the Author.

All rights reserved.
This work is protected against unauthorized copying under  Title 17, United  States Code

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor,  MI 48106 - 1346

10301895

10301895

2017



www.manaraa.com

Abstract

The development of Internet has brought us a more convenient way to purchase goods through e-commerce,

which has gradually pervaded our life. However, shopping experience of users in e-commerce has been

far from the optimum. In order to enhance user experience in e-commerce, we propose a series of novel

studies based on joint analysis of user-generated content and product information; in this dissertation,

user-generated content includes user reviews and social media text data, and product information includes

product descriptions and product specifications in general.

This dissertation aims at assisting e-commerce users in two directions: discovering products and making

purchase decisions. To help users discover products, we first propose to leverage user reviews to improve

accuracy of product search. We carefully combine product descriptions and user reviews to improve product

search. Then, we also propose to recommend products via inference of implicit intent in social media text.

We infer implicit intent in user status text leveraging parallel corpora we build from social media, and we

recommend products whose descriptions satisfy the inferred intent.

In order to help users make purchase decisions, we first propose to generate augmented product spec-

ifications leveraging user reviews. Product specifications are often difficult to understand especially for

high-technology products that contain many advanced features. We jointly model user reviews and product

specifications to augment product specifications with useful information in the user reviews. We also propose

to retrieve relevant opinions for new products. New or unpopular products often have no reviews, and such

lack of information makes consumers hesitate to make a purchase decision. We leverage user reviews of

similar products, where similarity is estimated using product specifications, to retrieve relevant opinions for

new products.

The experiment results show the proposed models are effective in general. The models are also general

enough to be applied to any entities with their text data. Furthermore, the models can benefit both product

manufacturers and consumers, so their potential impact may be even bigger.
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Chapter 1

Introduction

1.1 Motivation

With the development of Internet, the way people purchase products has gradually changed. According to

United States Census Bureau, U.S. retail e-commerce sales in 2015 was estimated at about $342 billion,

which is an increase of 14.6 percent from 2014.1 More surprisingly, proportion of e-commerce sales to the

total retail sales has constantly increased from 2.2 percent in fourth quarter of 2004 to 7.5 percent in fourth

quarter of 2015 (Figure 1.1).2 The role of e-commerce in our life becomes more and more important, and

thus, we need to emphasize more on user experience in e-commerce. The shopping experience of users in

e-commerce has been far from the optimum. For example, it is sometimes hard to find products a user needs,

and more useful information about products in a user’s perspective can be incorporated into the product

information. Hence, in this dissertation, we will study how to enhance user experience in e-commerce via

joint analysis of user-generated content and product information.

Figure 1.1: U.S. retail e-commerce sales as a percent of total retail sales.

While product information written by manufacturers helps consumers understand features of the prod-
1https://www.census.gov/retail/mrts/www/data/pdf/ec_current.pdf
2Estimates are adjusted for seasonal variation.
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ucts, user-generated content such as user reviews can offer indirect experiences to consumers. Thankfully, the

growth of e-commerce resulted in an abundance of user reviews. Online retailers have encouraged consumers

to leave reviews on products in order to help other consumers make purchase decisions. Indeed, according to

a survey, 60 percent of consumers preferred to purchase products from a site that has user reviews, and 48

percent of consumers considered user reviews more influential than advertising (24 percent) or recommenda-

tion from sales assistants (22 percent).3 At the same time, people leave numerous status messages on social

media with the development of Internet. Everyday, 500 million tweets are left on Twitter.4 People express

their needs in various ways on social media, so social media text can be a good resource to understand user

needs for e-commerce. In order to provide better user experience in e-commerce, we thus need to take a

closer look at user-generated content such as user reviews and social media text.

Meanwhile, online retailers usually provide product information such as product descriptions and product

specifications. Such product information helps consumers understand the products well so that they can

easily make purchase decisions. Product descriptions describe product aspects in an unstructured or weakly

structured form while product specifications describe technical characteristics of products in a structured

form. While product descriptions are essential in e-commerce to describe products with easy words, online

retailers often provide product specifications with technical terms. Product specifications are provided

at more than 50 percent of surveyed online retailers,5 and they consist of a set of (feature, value) pairs.

Information in product specifications is useful especially for high-technology products with several electronic

components because they enable consumers to understand the details of products in an organized way. The

abundance of such data including product descriptions and specifications enables us analyze them to mine

useful knowledge.

Both user-generated content and product information can be important resources to enhance user experi-

ence in e-commerce. However, while text mining on either user-generated content or product information has

received much attention, there are a limited number of studies that jointly analyze user-generated content

and product information (especially product specifications) despite their big potential impact.

1.2 Challenges

Although user-generated content and product information are valuable resources to enhance user experience

in e-commerce, the usefulness of independent analysis on each of them is limited. For example, opinion

mining and sentiment analysis [76] on user reviews of a product can be useful to customers only if there
3https://www.reevoo.com/news/half-of-consumers-find-social-content-useful-when-shopping-online/
4http://www.internetlivestats.com/twitter-statistics/
5https://www.marketingsherpa.com/article/chart/product-page-display
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exists any reviews for the product; such techniques cannot provide any analysis for products that do not have

any reviews. Therefore, we need techniques that can jointly analyze user-generated content and product

information to provide even more useful knowledge. For example, we can jointly analyze user reviews and

product specifications of existing products to retrieve relevant opinion sentences for new products. However,

there are challenges in the joint analysis.

1.2.1 Vocabulary Gap between User-Generated Content and Product

Information

There exists a vocabulary gap between user-generated content and product information. User-generated

content such as user reviews and social media text is written by ordinary users, and it often contains lots

of informal expressions. On the other hand, product information such as product descriptions and product

specifications is written by manufacturers, and it is usually written with formal expressions. Moreover, while

general users focus more on the product aspects they consider, manufacturers often write every detail of

the products. The resulting vocabulary gap lets the resources have different characteristics such as Inverse

Document Frequency (IDF) of words, which is considered very important in analyzing text data. Therefore,

we should carefully handle the vocabulary gap when we jointly analyze the different kinds of resources.

1.2.2 Joint Analysis with Structured Product Information

Previously, researchers mostly studied independently on user reviews. However, user reviews can be even

more useful together with structured product information such as product specifications. For example,

product specifications, which consist of (feature, value) pairs, are often difficult for novice users to understand.

Instead of listing (feature, value) pairs of a product, users may want additional guidance that helps them

understand the product features. For example, from the specifications, users may want to find out which

features are more important in a user’s perspective. Users may also want to know what are special about

each product. In addition, it may be useful if users can view opinions relevant to certain features or feature

values when they view the specifications.

Such data mining tasks require a joint analysis of user reviews and product specifications. The associa-

tions between product features, which are often standardized, and consumer opinions may be very interesting

to product manufacturers as well as users. For example, manufacturers can find out which features of their

product are liked or disliked by customers so that they can improve their products based on user opinions.

Therefore, mining opinions with consideration of product specifications would provide us very useful analysis.

However, while many researchers studied independent analysis on user reviews, only few researchers studied
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joint analysis of user reviews and product specifications, and the joint analysis requires special techniques to

control two different text data: unstructured text (user reviews) and structured text (product specifications).

1.2.3 Noise and Mixed Opinions in User-Generated Content

User-generated content is often very noisy. User reviews and social media text are written by ordinary users

who often ignore grammar and make typos. Kaufmann [44] describes that tweets contain so much noise that

it is difficult to extract useful information from them. On the other hand, user reviews about a product

often diverge in their opinions. Sometimes, users write consistent opinions about the product, but users often

have contradictory opinions about it. Thus, it is more desirable to find opinions that are central among all

opinions of a product. In addition to such mixed opinions, user-generated content often contains spam texts

that may harm credibility of the analysis. We thus need to remove the noise and handle the mixed opinions

well to provide a more credible analysis.

1.3 Joint Analysis of User-Generated Content and Product

Information to Enhance User Experience in E-commerce

Figure 1.2: A typical shopping experience in e-commerce. This dissertation studies each component in the
left and the right parts.
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A typical shopping experience in e-commerce is depicted in Figure 1.2. A user first discovers a product

via product search or recommendation, which may be personalized or not. Once the user finds a relevant

product, the user reads the provided product information in order to make a purchase decision. If the user

is still interested, the user may further read user reviews to find out what other customers have said about

the product. After digesting enough information, the user decides whether to purchase the product or not.

If the user does not like the product, then the user may go back to the previous step, where the user can

discover other products.

In other words, we assume that there are two main roles of online retailers: assisting users in discovering

products and in making purchase decisions. To help users discover products, we can let the users type

keywords to search for products they are interested in, or more proactively, we can recommend products that

the users may be interested in. In this dissertation, we propose two directions to assist users in discovering

products via joint analysis of user-generated content and product descriptions: (1) product search leveraging

user reviews and (2) product recommendation via inference of implicit intention in social media text. Once

users find a product they are interested in, e-commerce sites are supposed to provide detailed information

about the product in order to help them make purchase decisions. In this dissertation, we propose additional

two directions to generate useful information about products via joint analysis of user reviews and product

specifications: (3) generating augmented specifications and (4) opinion retrieval for new products.

In specific, we propose four directions in total to achieve our goal:

1. We propose to leverage user reviews to improve accuracy for product search, especially mobile app

search. Mobile apps are now important in our everyday life, where average American consumers spend

more than two hours per day inside the apps. Meanwhile, the number of mobile apps in app stores has

explosively increased. The myriad apps have made it extremely hard for consumers to discover needed

apps without search or recommendation. While there are a few commercial mobile app search engines

available, the new task of mobile app retrieval has not yet been rigorously studied. We first study the

effectiveness of the existing general information retrieval models. Then, we propose a novel approach

that jointly models app descriptions and user reviews. Our key idea is to leverage user reviews to find

out important features of apps and bridge vocabulary gap between app developers and users. We also

create a test data set for evaluating the novel problem. Experiment results indicate that the proposed

approach effectively models app descriptions and user reviews and outperforms state-of-the-art retrieval

models.

2. We propose to recommend products, i.e., mobile apps, for social media users. People often implicitly

or explicitly express their needs in social media in the form of “user status text”, and such text can
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be very useful for service providers and product manufacturers to proactively provide relevant services

or products that satisfy people’s immediate needs. We study how to infer a user’s intent based on

the user’s “status text” and recommend mobile apps that may satisfy the user’s need. We address

this problem by framing it as a new entity retrieval task where the query is a user’s status text and

the entities to be retrieved are the mobile apps. We first propose a novel approach that generates

a new representation for each query. Our key idea is to leverage user-generated content, i.e., social

media text, to build parallel corpora that contain implicit intention text and the corresponding explicit

intention text. Specifically, we model various user intentions in social media text using topic models,

and we predict the user intention in the query that contains implicit intention. Then, we retrieve

relevant mobile apps with the predicted user intention. We evaluate the task using a new data set

we create. Experiment results indicate that the proposed model is indeed useful to understand user

intentions and outperforms the state-of-the-art retrieval models.

3. We propose to generate augmented specifications by jointly modeling user reviews and product spec-

ifications. Product specifications provide organized details of a product, and such information can

help users make purchase decisions. While product specifications are often available at online retailers,

they are not straightforward for novice consumers to understand, especially advanced features of high-

technology products. We jointly model user reviews and product specifications to generate augmented

product specifications, which can help consumers understand products and their features. In specific,

we propose a novel Specification Latent Dirichlet Allocation (SpecLDA) that can enable us to effec-

tively model user reviews and product specifications at the same time. The augmented specifications

inform customers what other customers have said about the features in the reviews of the same product

and also different products. SpecLDA can also infer importance of each feature and infer which words

are special for each product so that customers can quickly understand a product they are interested

in. Experiment results show that SpecLDA can effectively augment product specifications with useful

knowledge from user reviews.

4. We propose to retrieve relevant opinion sentences for new products. With the rapid development of

E-commerce, abundant user reviews have been written by consumers who bought the products. These

reviews are very useful for consumers to optimize their purchase decisions. While user reviews are

abundant for popular products, the majority of products still lack user reviews since they are new or

unpopular. For such products with no reviews, we propose to exploit user reviews of other products

that are similar to them. Our key idea is to leverage product specifications to assess similarity between

the query product and other products and extract relevant opinion sentences from reviews of the similar
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products, where a consumer may find useful discussions. Then, we provide ranked opinion sentences

for the query product that has no user-generated reviews. We create a new data set and propose

an evaluation method that can automatically evaluate the retrieved review sentences without manual

efforts. Experiment results show that our novel probabilistic methods can effectively retrieve useful

opinion sentences for products that have no reviews.

The rest of this dissertation is organized as follows. The common related work is discussed in Chapter 2.

In Part I, we discuss how to assist users in discovering products. We first propose to leverage user reviews for

product search in Chapter 3. Then, we present the study of product recommendation via inference of implicit

intention in social media text in Chapter 4. In Part II, we discuss how to assist users in making purchase

decisions via mining useful knowledge. We first present the study of generating augmented specifications

by jointly modeling user reviews and product specifications in Chapter 5. Then, we propose to retrieve

relevant opinion sentences for new products through joint analysis of user reviews and product specifications

in Chapter 6. We discuss the conclusion and promising future directions in Chapter 7.
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Chapter 2

Related Work

The development of Internet has brought e-commerce, a new way to purchase a product, to humanity. The

growth of e-commerce attracted many researchers’ attention. For example, to understand why people shop

online, Swaminathan et al. [93] studied what factors influence online purchasing behavior. Their results

imply that reliability of vendors, competitive prices, useful information, and ease of canceling orders affect

the frequency of online purchases. They also found that consumers who are motivated by convenience

are more likely to shop online. To further understand e-commerce consumers, Rohm and Swaminathan [88]

developed a typology of online shoppers based on shopping motives such as online convenience, physical store

orientation, information use in planning and shopping, and variety seeking in the online shopping context.

Researchers also have studied how shopping experience in e-commerce can be enhanced. For example, Häubl

and Trifts [31] developed interactive tools such as a recommendation agent and a comparison matrix that

help e-commerce consumers make much better decisions while making substantially less effort.

In this dissertation, we jointly analyze user-generated content and product information to enhance e-

commerce shopping experience. Here, we introduce some related work that either jointly or independently

analyzes user-generated content and product information for e-commerce. In general, user reviews and

social media text are used as user-generated content, and product descriptions and specifications are used

as product information.

Text mining on user-generated content for products has been widely studied with the development of e-

commerce, in order to help consumers make purchase decisions. For example, user reviews are one of the most

important online resources to obtain other consumers’ opinions on a product. It has been shown that user

reviews have a significant impact on sales of products such as movies and hotels [24, 108]. However, the great

amount of reviews make consumers hard to digest them, resulting in demand for automatic opinion mining

techniques. Opinion mining such as opinion retrieval and summarization on user reviews thus attracted

a lot of attentions for a decade. There are several surveys which summarize the existing opinion mining

work [76, 60, 45]. Opinion mining has different characteristics from general text mining. In opinion mining,

subjective text (opinions) is focused while objective text is often excluded. Such subjective text is often
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analyzed to identify its opinion polarity (e.g., positive or negative), which readers care about. Also, targets

of opinions are generally identified since opinions are expressed towards targets such as products or aspects

of products. Thus, aspect-based opinion mining [37, 85, 101] has been studied as a main stream in the field.

Likewise, user reviews have been employed to retrieve and summarize opinions for products. There are

also a few studies that employed user reviews to predict ratings [75, 29] or sales [20] of a product. For

example, Pang and Lee [75] proposed to infer an author’s implied numerical rating of a review. However,

user review analysis basically cannot be performed if there does not exist any user reviews for a product.

We thus study how to retrieve relevant opinion sentences for products that do not have any user reviews.

As far as we know, there is no existing work that studied to retrieve opinions for such products; previous

studies mine opinions for products that already have reviews.

Most of the studies leveraging user-generated content for e-commerce focused on opinion mining and

summarization. Despite their abundance, user reviews have been leveraged for product search by only a few

researchers. Ganesan and Zhai [28] proposed opinion-based entity ranking leveraging user reviews. They

ranked entities such as products based on a user’s preferences expressed in reviews. For example, for a

query “fantastic battery life”, their ranking method retrieved products with good battery life according to

the reviews. However, they exploited only user reviews to represent products, and the product information

was not exploited. Duan et al. [22] leveraged product specifications as well as user reviews to improve

performance on product search. While they jointly analyze product specifications and user reviews for

product search, we jointly analyze product descriptions and user reviews, which may be more general since

products in some categories such as mobile apps do not have product specifications.

Meanwhile, product information such as product specifications have been exploited for product ranking

and search. For example, ranking techniques for structured product database were proposed in [15, 92].

However, although product specifications have been available in many e-commerce sites, only a few studies

employed them for joint analysis with user reviews. For example, Zhou and Chaovalit [117] performed

sentiment classification on user reviews leveraging domain ontology database from IMDb1. Other related

studies employed product specifications to build an aspect hierarchy [112] and summarize product features

[103, 82]. However, none of them studied feature values as well as features in specifications. In addition, to

the best of our knowledge, no research work has studied the problem of augmenting product specifications.

We jointly analyze user reviews and product specifications to augment product specificaitons.

1http://www.imdb.com
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Part I

Assisting Users in

Discovering Products
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Chapter 3

Leveraging User Reviews to Improve
Accuracy for Product Retrieval1

3.1 Introduction

Myriads of products make it difficult for consumers to find “right products” for them. There can be mainly two

ways to help consumers discover products. We can let users submit a query, and the product search engine can

retrieve products relevant to the query. More proactively, we can recommend products that the consumers

are likely to be interested in. While product recommendation can suggest products to consumers more

proactively than product search, it is more difficult for product recommendation to identify the immediate

and explicit needs of consumers, which means that product search and product recommendation have their

own advantages and disadvantages. In this chapter, we study how to leverage user reviews to improve

accuracy for product retrieval. In the next chapter, we will study how to identify a user’s explicit intention

in the user’s social media text.

Product search is a kind of entity search, and it is different from Web search in that there are often user

reviews for products while there are very few user reviews for Web documents. In this work, we focus on

mobile apps in the product domain since mobile apps occupy a large share of our everyday life, and there

exist many user reviews for them. According to a recent analysis by Flurry, average American consumers

spend about three hours (177 minutes) per day on mobile devices,2 which is more than the average time

spent on TVs (168 minutes). An analysis in 2013 shows that 80% of the time spent on mobile devices is

inside apps and 20% is spent on the mobile web.3 The time spent on the mobile web remained flat in 2014

while the time spent inside apps increased. While consumers spend much of their time inside apps, they

constantly download new mobile apps.4 This means that the role of app search and recommendation system

remains important.

Meanwhile, the number of mobile apps in app store is explosively increasing so that the search function

in app store becomes essential. As of July 2014, there are about 1.3 million apps in Google Play app store
1Part of this work has been published in [78].
2http://www.flurry.com/blog/flurry-insights/mobile-television-we-interrupt-broadcast-again
3http://www.flurry.com/bid/95723/Flurry-Five-Year-Report-It-s-an-App-World-The-Web-Just-Lives-in-It
4http://www.flurry.com/blog/flurry-insights/app-install-addiction-shows-no-signs-stopping
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and 1.2 million apps in Apple App Store.5 The myriad apps made consumers extremely hard to find apps

without search or recommendation functions. For example, Google Play does not list all of the apps. Instead,

it only lists recommended or popular apps because finding an app through the long list does not make sense

any more. Moreover, in an app developer’s view, new or unpopular apps are barely discovered by consumers

if they are not recommended by the app stores. Therefore, app search engine is definitely essential for both

consumers and developers.

Thus, it is our goal to find apps based on a query given by a user. Specifically, given a user query that

describes an aspect of an app, the desired search result would show a ranked list of apps where higher ranked

apps are more likely to have the described aspect. For example, for a query “book a flight”, we expect the

search result to include apps such as “Expedia Hotels & Flights” and “Orbitz – Flights, Hotels, Cars” in high

ranks since these apps meet the user’s need quite well. However, if an app description is not written well,

e.g., too short or hardly useful, the retrieval system would not rank the app high even though the app is

actually relevant to a query. In addition, app descriptions are written by app developers while search queries

are made by users, and this results in vocabulary gap between them. Therefore, to improve accuracy for

mobile app retrieval, we propose to leverage user reviews, which provide more information about an app in

the user’s vocabulary.

Although it is an interesting new retrieval task, app retrieval has not yet been rigorously studied in the

literature. Indeed, no test collection has ever been created yet for quantitatively evaluating this task. To

address this problem, we conduct the first systematic study of effectiveness of both existing retrieval models

and new retrieval models for this task, and we create the very first test collection for evaluating this new

retrieval problem.

This work makes the following contributions:

1. We introduce and study a novel research problem of mobile app retrieval leveraging user reviews. To

the best of our knowledge, this is the first effort in this area, and no other research work studied the

same problem as ours.

2. We propose a novel probabilistic topic model that jointly models user reviews and unstructured product

information (product description) in order to obtain representation of apps. The model captures topics

jointly from reviews and descriptions so that the topics reflect vocabulary of both users (user reviews)

and developers (app descriptions). The model is unsupervised and general, so it can be applied to other

domains where there are unstructured text about an entity and an associated set of unstructured text.
5http://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
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3. We create a new data set for evaluating the task and conduct experiments to show that the proposed

method outperforms baseline approaches for mobile app retrieval. The mobile app data set is crawled

from a major app store, Google Play. We let domain experts generate queries based on android forums.

Then, we collect query relevance data via crowdsourcing service. The test collection is available at

http://timan.cs.uiuc.edu/downloads.html. As far as we know, no previous research for mobile

app retrieval has performed quantitative evaluations.

3.2 Related Work

Recommendation systems are highly related to information retrieval systems in that they rank objects to

fulfill needs of users, and the recommendation systems are surveyed well in [38]. App recommendation

systems have been studied by a few researchers [118, 111]. For example, Lin et al. [58] addressed cold start

problem in app recommendation system by leveraging social network data. However, retrieval systems are

different from recommendation systems mainly because a user explicitly expresses his or her needs in retrieval

systems while the recommendation systems suggest items based on user profile without asking for the user’s

needs. Recommendation systems may be more convenient for users since a user does not have to input his or

her needs, but they are likely to be less accurate than information retrieval systems since they barely know

the user’s immediate needs. In addition, recommendation systems encounter a cold start problem when a

user does not have his or her profile yet or when the system does not have enough transaction data yet. On

the other hand, information retrieval systems do not require such data, so there is no cold start problem for

them.

There have been extensive studies for XML retrieval, which is related to our work since app data consist

of elements such as app descriptions and user reviews. Some of the XML retrieval studies also support

simple keyword queries [62] while some other XML retrieval studies support only structured queries [100].

However, our goal is to augment app descriptions with user reviews to obtain a better representation for an

app, while XML retrieval focuses more on document structure in general. In addition, while retrieval unit in

our task is clearly defined as a mobile app, in XML retrieval, every element is a retrievable unit [42], which

makes XML retrieval different from our task.

Entity ranking and entity search are closely related to our problem [19]. While entity ranking usually

focuses on exploiting rich structures [98, 81], Ganesan and Zhai [28] studied opinion-based entity ranking

leveraging only review text. In their work, a query is structured with preferences on different aspects of an

entity. The known-type entities are then ranked based on aspect-based sentiment from user reviews, while
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we rank unknown-type apps based solely on query relevance. Product search is highly related to our work.

Duan et al. [22] leveraged product specifications and user reviews to improve performance on keyword search

in product database. However, while products usually have such structured specifications that characterize

products, mobile apps usually have no structured specifications since there is no standardized features of apps,

which makes the problem more challenging. Meanwhile, there have been some efforts to build commercial

app search engines such as [17]. However, mobile app retrieval problem has not yet been studied rigorously

with systematic experiments.

3.3 Problem Definition

In order to find an app, a user constructs a text query q, where we assume q represents the search intent of

the user, and q is input to an app retrieval system. Then, the app retrieval system searches for apps that

satisfy the user intent and shows the user a list of apps that are ranked according to their relevance to q,

which conforms to the probability ranking principle [87]. Formally, we are given M apps A = {a1, ..., aM}.

For each app ai, there is an unstructured app description di and user reviews that are concatenated to a

single review document, ri. Our goal is to retrieve a list of apps for each q based on their descriptions and/or

reviews and rank them in order of the probability of relevance. Figure 3.1 illustrates our problem.

Figure 3.1: Mobile app retrieval with app descriptions and user reviews.

To the best of our knowledge, retrieval of entities exploiting opinionated content as well as entity descrip-

tion is a new problem that has not been well addressed yet in previous work. Kavita and Zhai [28] ranked

entities leveraging user reviews but no associated descriptions. In [27] and [22], the researchers exploited user

reviews and associated structured data to rank entities while we do not use structured data but unstructured

description data about entities.

User reviews are good extra sources to find apps especially when an app description is too short or is
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poorly described. However, leveraging both app descriptions and user reviews is challenging because those

two types of unstructured text are written by different authors in different views. Consequently, different

topics are stressed and different vocabulary sets are used in the two types of data, which make them difficult

to combine. In addition, user reviews often contain content that does not address the entity’s features;

indeed, a huge portion of reviews is about installation problems or general sentiment on the whole app.

Therefore, careful unification of the two different types of data is desired.

The main research questions we would like to answer in our study are:

1. How can we create a test collection for evaluating this new retrieval task? When query log data is not

available, obtaining realistic queries is challenging and important for research.

2. How effective are the existing general retrieval models for this task? Since there is no previous work

studied on this task, we do not know how well existing models will work for app retrieval.

3. Can reviews help? User reviews can be easily obtained at app stores, but it is unknown whether app

retrieval systems can be improved by leveraging them.

4. Can topic models be used to more effectively combine descriptions and reviews? Given two different

types of text data, how can we effectively generate unified representation of descriptions and reviews?

3.4 Test Set Creation

Although mobile apps have pervaded our everyday life, there does not exist a test data set for mobile app

retrieval task. Thus, in this section, we discuss how we can create the test set. In particular, we discuss how

we can collect mobile apps from commercial app stores, where we can obtain realistic queries, and how we

can collect query relevance data.

3.4.1 Collecting Apps from App Stores

App descriptions and user reviews are available at multiple app stores such as Google Play, Apple App Store,

and Amazon Appstore. Among them, we chose Google Play because it is one of the largest app stores with

abundant reviews. In Google Play app store, there are 41 categories of apps, where each app is assigned

with only one category. From each category, we crawled about one thousand popular apps on average, which

are somehow ranked by Google, resulting in about 43 thousand apps in total. For each app, we crawled up

to the first 50 user reviews, which are ranked by their helpfulness votes. To compare our methods with the

search engine in Google Play, we also crawled top 20 retrieved apps and their reviews from Google Play for
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each search query. After all, we crawled 43,041 app descriptions (one description per app) and 1,385,607 user

reviews in total (32.2 reviews per app on average). We pre-processed text in the descriptions and reviews in

the following way. We first tokenized text into word tokens and lemmatized them using Stanford CoreNLP

[65] version 1.3.5. We lowered word tokens and removed punctuation. Then, stopwords and word tokens

that appear in less than five descriptions and five reviews were removed. Also, word tokens that appear in

more than 30 percent of descriptions or reviews were removed since they do not carry important meanings.

We finally have 18,559 unique word tokens (V ), and the statistics of the resulting text data is shown in Table

3.1.

Table 3.1: Statistics of text data in app descriptions (D) and user reviews (R).

D R
Average number of tokens 94.1 176.4
Total number of tokens 4,051,366 7,592,779

3.4.2 Where Can We Obtain Realistic Queries?

In order to quantitatively evaluate how well the suggested methods perform, we need a query set and a

query relevance data set. Unfortunately, there does not yet exist such test collection. We thus create our

own test collection. However, collecting realistic queries that embed the needs of users for app search is not

easy. Researchers who do not work for companies that provide an app search engine generally do not have

access to the query log data, hence it is hard for them to know which apps users want to find and which

apps are difficult to find. To collect such real queries, we propose to leverage an app forum.

There is an Android forum6 where users frequently ask various kinds of questions about Android including

Android apps. We employ Google search engine to find threads containing an exact phrase “looking for an

app” in the forum in order to find posts about app search. This can be done by giving the following query to

the Google search engine: “looking for an app" site:forums.androidcentral.com. Then, for each search result,

we systematically determined to collect the post or not. We retained a post only if the user looks for an app

and the thread includes one or more answers that recommend relevant apps because there are users who

look for non-existing apps. The first sixty such posts were saved, and one of them with title “walkie talkie

app” is shown below.

I’m looking for an app that if I push a button and choose either of my kids android phones. I want

it to just play on their phone without having to click on a voice file or do something interactive. Kind

of like an intercom. Does anything like this exist?

6http://forums.androidcentral.com/
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Next, we asked domain experts to write a short search query (usually a couple of keywords) for each post,

by pretending they were the authors who wrote those posts and want to search for the app at app stores.

Examples of such generated queries are: “locate cell tower”, “podcast streamer”, “nightstand clock”, “auto

text while driving”, and “music player for church”. Please note that the collected queries may not precisely

reflect representative queries in actual app stores, and collecting such queries is left as our future work.

Meanwhile, one may be concerned that the queries are biased towards difficult ones since we obtain them

from forum posts, where users post questions when they do not know the answers. The relevance data in

the next section show that the queries are not “very” difficult.

3.4.3 Collecting Query Relevance Data

To judge whether a retrieved app is relevant to a query, we need human-labeled relevance data. However,

labeling all the retrieved apps by humans is too expensive. We thus created a pool, which consists of top

retrieved apps from different retrieval systems, and we employed a crowdsourcing service, CrowdFlower7, to

label them at affordable prices. Specifically, for each query, we pooled together the top 20 retrieved apps

from each of the suggested methods with multiple parameter combinations. Then, for each of the (query,

retrieved app) pairs, we made a question providing the short query, the entire post, and the link of the

retrieved app, and we asked three annotators to label it. Each annotator was asked to read the query and

entire question post, follow the link to the app store, read the app description, and then judge if the app

satisfies the search intent on three relevance levels (no satisfaction at all (0), partial satisfaction (1), and

perfect satisfaction (2)).

Collecting a high-quality gold standard data set through crowdsourcing is often difficult since there are

lots of abusers. To control quality of the relevance judgments, we manually judged relevance of 120 (query,

app) pairs and used them as quiz questions. Each annotator was allowed to start labeling the data set only

if the annotator passes our quiz session with at least 75% of accuracy, where the quiz session consists of eight

randomly selected quiz questions. We also inserted a random quiz question for every four (query, app) pairs

in a random order, without telling which one is a quiz question. If the annotator’s accuracy goes below 75%

at any point of time, we removed all the answers from the annotator and asked other annotators to judge

them. We paid five cents for each judgment, and each annotator was limited to judge up to 250 questions.

When all the needed judgments were made, we verified the given links to the app store, and if the links are

no longer valid, we removed the (query, app) pairs since the annotators may have made random answers

when they encountered the broken links. The three resulting judgments for each (query, app) pair were
7http://www.crowdflower.com/
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averaged to be used as a relevance score. From the 60 queries, we discarded four queries that Google Play

search engine could not retrieve relevant apps in top 10 apps.

Table 3.2: Statistics of relevance data for 56 queries. Some statistics include standard deviations followed
by “±”.

Avg. # of words in each query 4.04 ± 1.43
# of distinct (query, app) pairs judged 4,534
# of all judgments 13,602
Avg. # of (query, app) pairs for each query 81.0 ± 17.5
# of all annotators 272
Avg. # of judgments for each annotator 50.0 ± 48.1
Fleiss’ kappa 0.39
Perfect agreement rate 0.71

The statistics of relevance data for the resultant 56 queries are shown in Table 3.2. To measure inter-

annotator agreement, we employed Fleiss’ kappa. The kappa value is 0.39, which can be interpreted as

between “Fair agreement” and “Moderate agreement” according to [50]. Perfect agreement rate, which is the

proportion of (query, app) pairs where all three annotators agree on judgment, is 0.71. To see how difficult

each query is, we counted the number of judgments where at least two annotators judged as perfect relevant.

For each query, there are 13.6 such relevant apps on average with standard deviation being 7.87, which

means that the queries are not very difficult considering the size of the data set. This may be due to the

fact that the forum post was uploaded a while ago so that the non-existing apps could have been released

before we crawl the data set.

3.5 Methods

In order to retrieve apps that best match a query q, we first try existing standard retrieval models based

only on app descriptions, which is a typical information retrieval problem. Then, we add user reviews to the

data set to see if they are useful for the task. To combine app descriptions with user reviews, we propose a

topic model-based method as well as traditional methods.

3.5.1 Standard Text Retrieval

Despite the importance of app retrieval problem, it has not been answered how well standard text retrieval

methods perform. We, therefore, employ existing state-of-the-art methods here.
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Okapi BM25

The Okapi BM25 method has been one of the state-of-the-art methods for ad-hoc retrieval. As presented in

[25], BM25 scores a document d with respect to q as follows:

score(q, d) =
∑
w∈q∩d

[ (k3 + 1)c(w, q)

k3 + c(w, q)
× (k1 + 1)c′(w, d)

k1 + c′(w, d)
× log

N + 1

df(w) + 0.5

]
(3.1)

where c(w, q) is w’s count in q, df(w) is a document frequency of w in a corpus, N is the number of all

documents in a corpus, and k1, k3, and b are parameters. A normalized count of w in d, c′(w, d), is defined

as

c′(w, d) =
c(w, d)

1− b+ b Nd

avl(d)

(3.2)

where c(w, d) is w’s count in d. Nd is the length of d, avl(d) is the average length of d in a corpus. We use

this model as one of the most popular text retrieval methods.

Query Likelihood Language Model (QL)

Query Likelihood retrieval model was introduced by Ponte and Croft in [84] using multiple Bernoulli to

model documents. Instead of multiple Bernoulli, most researchers have focused on using multinomial to

model documents since it was shown to perform better than multiple Bernoulli model [91]. Therefore,

we use Query Likelihood method with multinomial model (unigram language model) in this work. Query

Likelihood scores a document d with respect to q as follows:

score(q, d) =
∏
w∈q

p(w|d) (3.3)

where p(w|d) is a probability of w being in d. In order to avoid over-fitting and keep p(w|d) from being zero,

p(w|d) is smoothed by Dirichlet smoothing technique and defined as

p(w|d) =
Nd

Nd + µ
pml(w|d) +

µ

Nd + µ
p(w|D) (3.4)

whereD is a set of all documents, and pml(w|d) and p(w|D) are estimated by maximum likelihood estimator

(MLE), yielding pml(w|d)= c(w,d)∑
w′ c(w′,d) and p(w|D)= c(w,D)∑

w′ c(w′,D) . Smoothing parameter µ enables the system

to dynamically smooth pml(w|d) based on the length of d, Nd. Consequently, Query Likelihood Language

Model with Dirichlet smoothing is regarded as one of the state-of-the-art retrieval models, and we call it QL

in this work. Please refer to [114] for more information on smoothing language models.
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Topic Model-based Approach

Traditional retrieval models such as BM25 and QL do not consider association among words, which makes

the system unable to retrieve documents that do not contain a query word. If there exists a vocabulary gap

between queries and documents, the retrieval system is not supposed to work well. To solve the problem, we

focus on enriching document representation with topic models. Please note that techniques such as query

expansion can be combined with our suggested methods.

A topic model is a probabilistic model that can find latent themes and their distributions in a document

from a text collection, where a theme (topic) is a cluster of words whose occurrence in documents overlap

frequently. Thus, even if a document d does not contain a certain word w, p(w|d) can be high enough if d

contains many words that are in the same topic as w. For example, even if a word “bistro” is not contained

in a description for a restaurant finder app, the app can be retrieved if the description contains a word

“restaurant” since the two words are likely to be in the same topic(s). The two most popular topic models

are Probabilistic Latent Semantic Analysis (PLSA) [32] and Latent Dirichlet Allocation (LDA) [8]. PLSA

has two main problems: (1) the number of parameters grows as the data set size grows, and (2) it does not

generate a new document, which has not been seen in training data. Those problems are solved in LDA by

utilizing Dirichlet allocation, and thus, we employ LDA in this work.

For app retrieval problem, we suggest to exploit LDA-based document model (LBDM) [105], which

has been shown to effectively model documents. The LBDM-based retrieval system was shown in [109] to

generally outperform a retrieval system with a more sophisticated topic model, Pachinko Allocation Model

(PAM) [55], which captures correlations among topics. Thus, we employ LBDM as one of the baselines in

this study. We still use the same scoring formula as in (3.3), where the document language model p(w|d)

is replaced with LBDM. As presented in [105], p(w|d) of LBDM involves a linear interpolation of MLE-

estimated language model and LDA document model, which is defined as

p(w|d) =λ
[ Nd
Nd + µ

pml(w|d) +
µ

Nd + µ
p(w|D)

]
+ (1− λ)plda(w|d) (3.5)

where the LDA document model, plda(w|d), is described in [105] in detail. As in equation (3.4), MLE-

estimated document model, pml(w|d), is smoothed with MLE-estimated corpus model, p(w|D).

3.5.2 Retrieval with Descriptions and Reviews

App descriptions are not written perfectly by app developers. For example, some descriptions are too short,

and some others may contain too much useless information for search. Luckily, abundant user reviews are
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available, which may be a good source to complement such descriptions. Another important reason to

leverage user reviews is that both search queries and user reviews are written from a user’s perspective while

descriptions are written from a developer’s perspective. Due to the nature of apps, app descriptions are

usually written mainly about their features. However, app developers may not exactly know what terms

users would like to use to describe the features. For example, an app description may contain a phrase “find

nearby restaurants” to describe its feature. If a user searches for “food near me”, which does not have any

common terms with the description, the app will not be retrieved by simple keyword matching even though

the two phrases are about the same feature. In such case, user reviews may play an important role to bridge

vocabulary gap between app developers and users. If there is a user review containing a phrase such as

“good app for locating food near me” and the retrieval system indexes the review as well, the app would be

retrieved even when the description does not have such terms.

To leverage user reviews, we need to somehow combine representations of a description d and a concate-

nated user review r. Combining representations of two different data sets by simply adding words in them

together may not be a good idea if the data sets have different characteristics. In this section, we describe

how to combine them using our novel method as well as traditional methods.

BM25F

BM25F has been known as the state-of-the-art for structured information retrieval. Regarding descriptions

and reviews as different fields of a document, we can apply BM25F to our problem. Similar to [83], we

replace c′(w, d) in equation (3.1) with c′′(w, a), which is defined as

c′′(w, a) =
boostd · c(w, d)

1− bd + bd
|d|

avl(d)

+
boostr · c(w, r)

1− br + br
|r|

avl(r)

(3.6)

where boostd and boostr are weights for d and r, respectively, and bd and br play the same role as b does for

BM25. |r| is a length of review r, and avl(r) is the average length of r in a review corpus.

Combined Query Likelihood

To combine two different types of text data, it may be better to assign some portion of an app representation

to description data and some other portion of it to user review data. Thus, the unigram language model

for a description and a review, p(w|d) and p(w|r), respectively, can be combined as in [73] to build a unified

language model for an app, p(w|a), which is defined as

p(w|a) = (1− η)p(w|d) + ηp(w|r) (3.7)
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where η is a parameter to determine the proportion of review language model for p(w|a). To score apps with

respect to q, we follow the score function of QL. p(w|d) and p(w|r) are estimated by MLE and smoothed as

in QL, and the resulting score function for q and a is defined as

score(q, a) =
∏
w∈q

p(w|a)

=
∏
w∈q

[
(1− η)p(w|d) + ηp(w|r)

]
=
∏
w∈q

[
(1− η)

( Nd
Nd + µd

pml(w|d) +
µd

Nd + µd
p(w|D)

)
+ η
( Nr
Nr + µr

pml(w|r) +
µr

Nr + µr
p(w|R)

)]
(3.8)

where p(w|R) is a review corpus language model, Nr is the number of words in r, and µd and µr are Dirichlet

smoothing parameters for d and r, respectively.

AppLDA: a topic model for app descriptions and user reviews

In our task, the role of topic model is similar to that of user reviews in that they both provide augmentation

of vocabulary. In addition to bridging vocabulary gap, we design a topic model that can also remove noise

in reviews. The key idea is to simultaneously model app descriptions and user reviews by sharing topics

between the two different types of text and discarding parts of reviews if they don’t share topics with app

descriptions. Intuitively, when a user writes a review, the user would decide if he or she writes about a

topic in app description or some other topics such as installation problems. Assuming that those other

topics (review-only topics) do not help us retrieve relevant apps, we remove review texts that are about

review-only topics in order to have a better estimation of app representations. We thus form review-only

topics as well as shared topics to filter out review texts that are not useful for retrieval. Figure 3.2 illustrates

the different kinds of topics.
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Figure 3.2: Shared topics and review-only topics in app descriptions and user reviews.

Algorithm 1 Generative Process of AppLDA
for each shared topic z do

draw φz ∼ Dirichlet(β)
end for
for each review topic y do

draw ωy ∼ Dirichlet(γ)
end for
for each app a with a description d and a review r do

draw θd ∼ Dirichlet(αd)
for each i ∈ {1, . . . , Nd} do

draw zd,i ∼Multi(θd)
draw wd,i ∼Multi(φzd,i)

end for
draw ψr ∼ Beta(δ)
draw θr ∼ Dirichlet(K ·αp · prior(αd, zd) +αr)
draw πr ∼ Dirichlet(τ )
for each i ∈ {1, . . . , Nr} do

draw xr,i ∼ Bernoulli(ψr)
if xr,i = 0 then

draw zr,i ∼Multi(θr)
draw wr,i ∼Multi(φzr,i)

else
draw yr,i ∼Multi(πr)
draw wr,i ∼Multi(ωyr,i)

end if
end for

end for
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Figure 3.3: Graphical representation of AppLDA.
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The graphical representation of AppLDA is depicted in Figure 3.3, and its generative process is described

in Algorithm 1. The generation of app description by an app developer can be regarded as a typical topic

modeling process that is explained for regular LDA in earlier this section. After an app description is

generated, each word wr,i of review r with length Nr for an app a is written by a user. The user first

chooses whether to write about topics that are shared with descriptions or some other topics that are far

from the shared topics using switch xr,i according to a Bernoulli distribution ψa, which is drawn from a Beta

distribution with a symmetric tuple δ. If shared topics are chosen (xr,i = 0), the user further specifies a shared

topic zr,i from the topic distribution in r, θr, which is drawn from a Dirichlet distribution with an asymmetric

vector K · αp · prior(αd, zd) + αr. Here, K is the number of all shared topics, and αp is a symmetric

vector. prior(αd, zd) is a distribution generated from topics in d, which is estimated by Nz,d+α
d

Nd+Kαd , where N

with subscription and/or superscription means the number of words satisfying subscription/superscription

conditions. For example, Nz,d means the number of words assigned with z in d, and Nd is the number of

words in d. Then, the user writes a word wr,i about the chosen shared topic according to a multinomial word

distribution φzr,i , which is drawn from a Dirichlet distribution with a symmetric vector β. On the other

hand, if the user chooses to write about topics that are far from shared topics (xr,i = 1), the user further

chooses a review topic yr,i according to a multinomial topic distribution πr, which is drawn from a Dirichlet

distribution with a symmetric vector τ . Then, wr,i is chosen according to a word distribution ωyr,i , which

is drawn from a Dirichlet distribution with a symmetric vector γ. This process is repeated for all words in

all app descriptions and user reviews for I iterations. Please note that all values in a symmetric vector are

the same; e.g., α = {α, ..., α}.

In order to guide the model to learn hidden topics in reviews, we use prior knowledge from topic distribu-

tion in app descriptions by prior(αd, zd). Intuitively, when a user writes a review about shared topics, the

distribution of shared topics in reviews is likely to be at least somewhat similar to that in app descriptions.

For example, if an app description is about finding nearby restaurants, the reviews are more likely to contain

topics regarding restaurants than other topics such as finance or game topics. The prior knowledge in app

descriptions is thus passed to reviews in the form of asymmetric prior distribution, prior(αd, zd), and this

distribution is referred to draw topics in reviews. Here, the strength of the prior knowledge is controlled

by the symmetric vector K · αp, and the prior knowledge is smoothed with the symmetric vector αr. In

other words, we can view this process as follows. A user is given a set of topics in an app description, and

the user writes a review about the app referring to the topics in the description. Such prior knowledge can

be employed via imposing asymmetric priors on the topic distributions of reviews. More information on

applying asymmetric priors in a topic model can be found in [99].
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The collapsed Gibbs sampling formulas to learn latent variables zd, zr, x, and y for an app a are as

follows. Learning a topic of the ith word in d, zd,i, is defined as

p(zd,i|W d,Zd\d,i,α
d,β) ∝ p(wd,i|zd,i,W d

\d,i,Z
d
\d,i,β)p(zd,i|Zd\d,i,αd)

∝
N
\d,i
wd,i|zd,i + β

N
\d,i
zd,i + V β

×
N
\d,i
zd,i|d + αd

Nd − 1 +Kαd

(3.9)

where W d is a set of all words in the description corpus, Zd is all shared-topic assignments for those words

in all descriptions, V is the size of vocabulary V , and K is the number of all shared topics. Again, N

with subscription and/or superscription means the number of words satisfying subscription/superscription

conditions, and “\d, i” means excluding d’s ith data. To learn a shared topic (xr,i = 0) for the ith word in

r, zr,i, we define the Gibbs sampling formula as

p(xr,i = 0, zr,i|W r,Zr\r,i,Z
d,X\r,i,α

d,αr,αp, δ,β)

∝ p(xr,i = 0|X\r,i, δ)× p(wr,i|zr,i,W r
\r,i,Z

r
\r,i,β)× p(zr,i|Zr\r,i,Z

d,αd,αr,αp)

∝
N
\r,i
x=0|r + δ

Nr − 1 + 2δ
×
N
\r,i
wr,i|zr,i + β

N
\r,i
zr,i + V β

×
N
\r,i
zr,i|r +Kαp

Nzr,i|d+α
d

Nd+Kαd + αr(∑
z N
\r,i
z|r
)

+K(αp + αr)

(3.10)

where W r is all words in the review corpus, and Zr is all shared-topic assignments for those words in all

reviews. On the other hand, to learn a review-only topic (xr,i = 1) for the ith word in r, yr,i, we define the

Gibbs sampling formula as

p(xr,i = 1, yr,i|W r,Y \r,i,X\r,i, τ , δ,γ)

∝ p(xr,i = 1|X\r,i, δ)× p(wr,i|yr,i,W r
\r,i,Y \r,i,γ)× p(yr,i|Y \r,i, τ )

∝
N
\r,i
x=1|r + δ

Nr − 1 + 2δ
×
N
\r,i
wr,i|yr,i + γ

N
\r,i
yr,i + V γ

×
N
\r,i
yr,i|r + τ(∑

y N
\r,i
y|r
)

+ Tτ

(3.11)

where Y is a set of review-only topic assignments for all words in all reviews, and T is the number of all

review-only topics.

Retrieval with AppLDA In order to retrieve apps relevant to a query q, we need document representa-

tions for apps, so we create a unigram language model for each a, plda(w|a), which is defined as
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plda(w|a) =

K∑
z=1

p(w|z,W d, Ẑd,β)p(z|a, Ẑd, Ẑr,αd,αr,αp)

∝
K∑
z=1

N̂w|z + β

N̂z + V β
×
N̂z|d + αd + N̂z|r +Kαp

N̂z|d+α
d

Nd+Kαd + αr

Nd +Kαd +
(∑

z N̂z|r
)

+K(αp + αr)

(3.12)

where Ẑd and Ẑr are topics for descriptions and reviews estimated from AppLDA, respectively, and N̂ with

subscription is the estimated number of words satisfying the subscription condition. The formula can be

interpreted as the unification of LDA-estimated language models for descriptions and reviews, where the

words that are not assigned with the shared topics are removed. In other words, the description and the

cleaned review form a single unified document for each app, and the unified language model is used for

retrieval. The AppLDA-estimated language model is combined with the MLE-estimated language models

to define the score function for q and a as follows:

score(q, a) =
∏
w∈q

p(w|a)

=
∏
w∈q

(
(1− λ)plda(w|a) + λ

[ Nd +Nx=0|r

Nd +Nx=0|r + µ
pml(w|a) +

µ

Nd +Nx=0|r + µ
p(w|A)

]) (3.13)

where Nx=0|r is the number of words assigned with shared topics in reviews, and pml(w|a) is MLE-estimated

language model for a’s description and cleaned review, which is defined as

pml(w|a) = p(w|a,W d,W r, X̂) ∝
Nw|d +Nx=0,w|r

Nd +Nx=0|r
(3.14)

and p(w|A) is estimated by MLE for descriptions and cleaned reviews of all apps A, and it is defined as

p(w|A) = p(w|A,W d,W r, X̂) ∝
Nw|D +Nx=0,w|R

ND +Nx=0|R
(3.15)

and µ is a Dirichlet smoothing parameter for MLE-estimated language models, and λ is a weight for MLE-

estimated language models against the topic model-estimated language model. In order to estimate reliable

values for LDA estimated language models, it is recommended to use multiple Markov chains in [105]. Similar

to the results in [105], we found that three Markov chains with 100 Gibbs sampling iterations each show

reasonably reliable performance, so we follow this setting.
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3.6 Experiments

In this section, we first describe how we set parameters for the experiments. Then, we qualitatively analyze

the search results from the suggested methods, and we quantitatively evaluate the results using our test

collection.

3.6.1 Parameter Setting

The following parameter values are used in the experiments unless otherwise specified. The parameters are

tuned from our data set based on average of four NDCG measures specified in section 3.6.3. For BM25,

we use the standard value k3=1,000, and we set the parameters k1=4.0 and b=0.4, which showed the

best performance. For BM25F, we tune the parameters at our best, and we consider the following values:

k3=1,000, k1=3.5, bd=0.4, br=0.3, boostd=0.6, and boostr=0.4. For Query Likelihood Language Model

(QL), µ is tuned to be 1,000. For Combined Query Likelihood (CombQL), the same µ is used, and we set

µr=300 and η=0.4, which showed the best performance. For LBDM, K is tuned to be 300, and we set topic

model parameters α= 50
K and β=0.01, which is the common setting in the literature. Its retrieval parameters

λ and µ are tuned to be 0.5 and 1,000, respectively. To see how well regular QL and LBDM perform with

both data sets D and R, we simply add words in reviews to the corresponding descriptions and used the

merged documents as an input to QL and LBDM; we call these methods as QL(D,R) and LBDM(D,R).

µ for QL(D,R) is tuned to be 800. For LBDM(D,R), K is tuned to be 300, and the same α and β values

are used as for regular LBDM, and retriever parameters λ and µ are tuned to be 0.5 and 800, respectively.

For our proposed model AppLDA, we set K=300 and T=30, which showed the best performance. We use

the standard values for other topic model parameters: αd=αr= 50
K , τ= 50

T , and β=γ=0.01. If one believes

that the reviews have a specific amount of shared-topic proportion, then δ can be used as asymmetric prior.

However, we let the model fully figure out the proportions, so we set δ=0.5 for symmetric vector δ, which

is a small value. A larger value of alphap lets the distribution of shared-topics in reviews be more similar

to that in app descriptions; αp is tuned to be 0.05. For retrieval parameters of AppLDA, we set λ=0.5 and

µ=800, which showed the best performance.

3.6.2 Qualitative Analysis

Table 3.3 and 3.4 show the biggest shared topics and review-only topics (measured by N̂z), respectively,

estimated by AppLDA. At Google Play, 18 of 41 categories are game-related categories, so they are reflected

in the topics; for example, the biggest shared topic is about “casino game”, and the fourth review-only topic
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Table 3.3: Top shared topics by AppLDA.

slot check photo news
bonus deposit picture article
win mobile pic story

machine account gallery break
spin bank image read
casino balance effect local
coin banking editing latest

payout credit editor content
slots transfer filter fox

jackpot transaction edit live

Table 3.4: Top review-only topics by AppLDA.

log interface ad addictive
account uus (ui) pop pass
login design annoying addicting
sign function remove enjoy
error miss advert addict

password lack advertisement challenge
website user rid kill
connect functionality full entertaining
server improvement seconds interesting
access clean click challenging

is about “sentiment towards games”. The other biggest shared topics are about “mobile banking”, “photo

editor”, and “news article”, and each of them represents a feature of an app well. Review-only topics seem

reasonable since the words in them are likely to appear more often in reviews than in descriptions. We also

compare top review-only topics from AppLDA with top topics from regular LDA when we use only user

reviews, which is shown in Table 3.5. Comparing the biggest topics of them, which are both about “account”,

it is shown that the topic in LDA is corrupted with “bank”-related words such as “bank” and “deposit” while

the topic in AppLDA is about general accounts of apps. An “account problem” topic is more likely to appear

Table 3.5: Top topics in the reviews by LDA.

log upgrade purchase note
account battle refund support
check spend upgrade pro
mobile character reinstall developer
login gold bug sync

password rpg force program
sign gameplay year tool

deposit attack month dev
service level lose tablet
bank fight block draw
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in review-only topics while a “mobile banking” topic is more likely to appear in shared topics. AppLDA is

able to separate such topics well by forming two different types of topics. Interestingly, AppLDA’s shared-

topics consist of words that do not carry sentiment while review-only topics often contains words carrying

sentiment such as “miss”, “lack”, “annoying”, and “addicting”. This means that AppLDA separated the two

different types of topics reasonably well; since regular LDA does not explicitly separate them, top topics in

reviews contain few sentiment words, but several words of them are likely to appear often in app descriptions.

To show the difference of retrieved apps from different models, we retrieve apps for a query “locate cell

tower” using the suggested methods. The top retrieved apps are shown in Table 3.7. According to the

question post, the query looks for an app that locates a cell tower the phone is currently attached to. By

comparing methods that do not leverage user reviews (QL and LBDM) with methods that do leverage user

reviews (CombQL and AppLDA), we can see the effect of adding more review text. The relevant apps such

as “Map My Cell Tower” and “zBoost Signal Finder” do not contain the query word “locate”, which makes

them hard to find. However, since the reviews of those apps contain phrases such as “Won’t even locate

my cell tower” and “Handy app to locate towers”, CombQL and AppLDA could rank them high. While the

reviews help bridge vocabulary gap by adding absent words from review text, topic model-based method

also bridges vocabulary gap by connecting associated words. LBDM gave high scores to relevant apps such

as “zBoost Signal Finder”, “Map My Cell Tower”, and “Signal Finder”, which do not contain the word “locate”

in their reviews, even though it does not leverage user reviews. Since the descriptions of those apps contain

words such as “gps” and “map” that are in the same topics as “locate” is, they could be ranked high.

3.6.3 Quantitative Analysis

Table 3.6: NDCG evaluation results for mobile app retrieval. The first three methods exploit only app
descriptions, D, while the next five methods leverage user reviews, R, as well as app descriptions, D.

N@3 N@5 N@10 N@20
BM25 0.578 0.550 0.527 0.537
QL 0.541 0.517 0.511 0.515
LBDM 0.584 0.563 0.543 0.565
BM25F 0.597 0.596 0.583 0.597
QL (D,R) 0.613 0.618 0.585 0.586
CombQL 0.637 0.624 0.602 0.593
LBDM(D,R) 0.610 0.625 0.613 0.626
AppLDA 0.651†§ 0.656†‡ 0.627† 0.634†‡
Google Play 0.589 0.575 0.568 0.566

Since we average relevance judgments of three annotators, the aggregated relevance is defined as a real

number in [0,2]. Hence, evaluation metrics such as Mean Average Precision (MAP), which requires binary
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Figure 3.4: NDCG measures for different µ values of QL (left) and for different k1 values of BM25.
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Table 3.7: Top retrieved apps for a query “locate cell tower”. Strikethrough indicates irrelevant apps.

QL LBDM CombQL AppLDA
GPS Tracker Pro zBoost Signal Finder Cell Map Cell Map
Tower Collector 3G 4G WiFi Map & Speedtest zBoost Signal Finder Map My Cell Tower
3G 4G WiFi Map & Speedtest GPS Tracker Pro Signal Finder zBoost Signal Finder
Locate -Find Friends & Family Tower Collector Network Signal Info Pro Signal Finder
Find My Phone Map My Cell Tower Tower Collector Network Signal Info Pro
inViu OpenCellID Locate -Find Friends & Family Map My Cell Tower Tower Collector
Signal Booster Reloaded inViu OpenCellID 3G 4G WiFi Map & Speedtest Cell Info Display
Signal Booster for Android Signal Finder Family Tracker: Locate Phones 3G 4G WiFi Map & Speedtest
Family Tracker: Locate Phones Find My Phone inViu OpenCellID Sprint Family Locator
Digital Leash Locate Family Tracker: Locate Phones GPS Tracker Pro GPS Tracker Pro
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relevance, cannot be employed. We instead employ Normalized Discounted Cumulative Gain (NDCG) [40] as

the evaluation metric because NDCG is able to measure ranking performance on multiple-level relevance data.

Specifically, we measure NDCG at 3, 5, 10, and 20 top retrieved apps to reflect diverse users’ information

needs. Unlike traditional web search, NDCG@3 might be quite important; it is common for app stores

to show only one or a couple of retrieved apps on a smartphone screen. On the other hand, obtaining

judgments for top 20 retrieved apps of retrieval systems with all combinations of parameter values is too

expensive and not realistic in practice. We judged top 20 retrieved apps of the suggested retrieval systems

with 22 parameter value combinations. The relevance data may be thus incomplete. However, it is shown

in [110, 11] that ignoring unjudged documents is effective in such situations. Therefore, we alternatively

employ induced NDCG at k judged apps, which shares the same philosophy as induced MAP in [110].

Induced NDCG ignores unjudged apps from the ranked list and is calculated in the same way as regular

NDCG. We simply call it NDCG in this work.

We compare the performance of the suggested methods as well as Google Play’s app search engine. Table

3.6 shows the evaluation results. †, ‡, and § are used to mark if the improvement for AppLDA is statis-

tically (paired t-test with p ≤ 0.05) significant in each measure over LBDM, CombQL, and LBDM(D,R),

respectively. As expected, LBDM outperforms BM25 and QL in all measures when only app descriptions

are available because LBDM is able to recognize semantically related words. When only app descriptions are

used, BM25 outperforms QL in all measures, and their performance on different parameter values is shown

in Figure 3.4. However, when both descriptions and reviews are used, QL(D,R) and CombQL outperform

BM25F in all measures except NDCG@20, which means QL and CombQL are more suitable to combine dif-

ferent data types for app retrieval than BM25F. It is clear to see that the models that leverage user reviews

perform better than the models that use only descriptions. For example, BM25F outperforms BM25, and

CombQL and QL(D,R) outperform QL with a relatively big performance difference. In addition, AppLDA

and LBDM(D,R) outperform LBDM, which means that topic model’s capability of bridging vocabulary is

even amplified when user reviews are added. QL(D,R) exploits user reviews by concatenating descriptions

and user reviews, and it is outperformed by CombQL that combines description model and user review

model with linear interpolation. This means that the review data set and description data set have their

own characteristics, so they need to be combined without losing them. AppLDA outperforms CombQL and

LBDM(D,R), and the improvement is statistically significant in two measures and one measure, respec-

tively. While CombQL does not score high in NDCG@10 and NDCG@20, LBDM(D,R) does not score high

in NDCG@3. AppLDA seems to complement such drawbacks of CombQL and LBDM(D, R) by effectively

modeling app descriptions and user reviews.
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In order to understand the effects of leveraging reviews, we further investigate performance when different

proportions of review representations are used. NDCG measures for different η values of CombQL and

different boostsr values of BM25F are shown in Figure 3.5. η is a weight of review language model in

CombQL, and boostr is a weight of normalized count of word in reviews. Here, we set boostd = 1.0−boostr for

BM25F. When η = 1.0 or boostr = 1.0, the models exploit only reviews while they exploit only descriptions

when η = 0.0 or boostr = 0.0. Surprisingly, for both models, using only reviews gives a better performance

than using only descriptions; which means that review data set may be a better resource for app search

than description data set. Since both reviews and queries are written by users, there may be less vocabulary

gap between them, resulting in reviews being more useful for app retrieval than descriptions. Combining

app descriptions and user reviews yields even better performance, which peaks when η = 0.4 and boostr is

around 0.4. This means that descriptions and reviews supplement each other well.

Figure 3.6 shows AppLDA’s performance when different numbers of review-only topics T are used and

different values of αp priors are used. It seems that about 30 to 50 review-only topics exist in the review

data set, and setting too few or too many review topics harm the performance. The number of review-only

topics is much smaller than that of shared topics (300). This is because there are various available features

for each category of apps while the topics users mention other than app features converge to a small set

of topics such as “installation problems” and “user interface”. Meanwhile, αp controls the amount of topic

distribution priors for user reviews, and it is obtained from topic distribution of app descriptions. The priors

are used to give clues when identifying topics in reviews under the assumption that the distribution of shared

topics in reviews is likely to be similar to that of app descriptions. Indeed, it is shown in Figure 3.6 that

adding priors is helpful while adding too much priors is rather harmful. The performance peaks at αp = 0.05

when K = 300, which means that giving about fifteen guiding words to a noise-removed review is generally

desired, in other words.

3.7 Conclusion

In this work, we conducted the first study of a new product retrieval task, i.e., mobile app retrieval. Since

no test collection exists yet, we created the first one to evaluate this task. We used this test collection to

systematically study the effectiveness of both existing retrieval models and a new model that we proposed

to effectively leverage the companion review data with apps. Specifically, in order to combine different

vocabulary sets in app descriptions and user reviews and to filter out noise in reviews, we proposed a topic

model (AppLDA) that jointly models reviews and app descriptions and extracts aligned topics between
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reviews and descriptions. Evaluation results show that (1) BM25 outperforms QL when only descriptions

are used while QL and CombQL generally outperforms BM25F when reviews are added, (2) leveraging

reviews indeed helps app retrieval, (3) AppLDA significantly outperforms traditional retrieval models, and

(4) adding priors in AppLDA helps align topics between app descriptions and user reviews.

There are limitations in this work. Since there is no existing test collection and we do not have access

to query logs of users, we obtained the test queries leveraging web forums. We collected queries from forum

posts, which ask where to find apps with certain features. However, since we examined a few hundreds of

such forum posts, we do not have confidence that the collected test queries are indeed representative of user

queries. Also, although the query relevance data in section 3.4.3 show that the queries are not very difficult,

there may be a bias towards difficult queries since users upload posts to the forum when it is difficult for them

to find the mobile apps. Thus, taking a geometric mean of NDCG measures, in addition to an arithmetic

mean, may also be useful to find out which methods are more robust on such queries. Lastly, we collected

about 43 thousands mobile apps while there are about 1.3 million apps in Google Play app store. The 43

thousands apps cover most of the downloads occurred in the app store since we collected the most popular

apps. However, evaluation on the whole data set is expected to be more accurate.

Our work can be further extended in several ways: (1) collecting representative queries when query log

data is not available can be further studied, (2) one can explore other directions such as query expansion and

feedback-based models for app retrieval problem, and (3) one can identify other characteristics of mobile

apps to design a better retrieval model. Our created test collection is made publicly available and thus

enables further study of this new problem.
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Chapter 4

Product Recommendation via Inference
of Implicit Intent in Social Media Text

4.1 Introduction

In the previous chapter, we discussed how to improve product search accuracy leveraging user reviews in order

to assist consumers in discovering products. Consumers form a query that best expresses their immediate

needs, and the product search engine retrieves products that are most relevant to the query. While product

search engines react to queries containing a consumer’s explicit intention, we can also analyze consumer

text that contains the consumer’s implicit intention. In this way, we do not need to wait until the consumer

sends a query with the consumer’s explicit intention. Instead, we can analyze social media text that contains

consumers’ implicit intention, and we can recommend products that match the intention well. Since there

are countless user text at social media, we have opportunities to recommend products to numerous users.

With rapid development of Internet, people leave massive amount of their status messages on social

media. Everyday, 500 million tweets are left on Twitter1, 55 million status updates are made on Facebook2,

and 80 million photos (with text descriptions) are shared on Instagram3. A myriad of such user-generated

text data provided researchers opportunities to analyze them. For example, detecting real-time events [89],

sentiment analysis in tweets [1], interestingness of tweets [70], and stock market prediction based on tweets

[116] have been studied. More recently, researchers studied commercial intention analysis of tweets (e.g.,

[33, 21]). In social media, people discuss various topics such as their current status including what they do,

how they feel, and where they are. Often, social media users express their intention to purchase a product

in an implicit or explicit way. For example, a sentence “I will buy an iPhone” contains the user’s explicit

intention to buy the product. In another sentence “I lost my cellphone,” the user does not explicitly express

the intention to buy a cellphone, but we can infer that the user may want to purchase a cellphone (implicit

intention). Researchers mainly tried to detect whether a user text contains such commercial intention or

not. Since commercial intention analysis can provide a way to link “buyers” and “sellers” in social media,
1http://www.internetlivestats.com/twitter-statistics/
2https://blog.kissmetrics.com/facebook-statistics/
3https://www.instagram.com/press/
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the role of such analysis system becomes important. Nonetheless, most previous work focused on detection

of the commercial intention, and only few work studied on product recommendation based on commercial

intention in social media.

In this work, we study the task of supporting user status queries with implicit intention. We formulate

the problem as information retrieval problem where we retrieve mobile apps that satisfy the query, i.e.,

user status text with implicit intention. Our definition of intention has broader coverage than commercial

intention in previous studies does; we do not restrict the intention to be commercial. In order to match

implicit intention text with mobile apps, (i) we first infer possible user intentions in the query and then (ii)

rank apps based on their relevance to the inferred intentions. For example, given a user query “I am hungry”,

(i) we infer possible intentions such as “find nearby restaurants” and “browse recipe books”, and then (ii)

we recommend apps that can find nearby restaurants or show recipes. Note that the query with implicit

intention is different from traditional ad-hoc search queries, where users explicitly express their intentions.

To learn such behavior where a user implicitly expresses intention, we leverage social media. We collect

tweets that contain information about what people truly desire when they implicitly express their needs. We

then build parallel corpora from the tweets and follow information retrieval approach to infer user intention.

Inference of intention in user status text is an important problem. By analyzing intention in user status,

product manufacturers or service providers can provide relevant items or targeted ads to the users based on

the predicted intention. Such recommendation can also benefit users since they can find products or services

they need without expressing their intention explicitly. While users often update user status with explicit

intention, they more frequently reveal their needs implicitly. For example, researchers have found that there

are about twice as many tweets with implicit commercial intention than those with explicit commercial

intention [33, 21]. Therefore, we focus on analyzing implicit intention and recommendation based on it

although analyzing implicit intention is more challenging than analyzing explicit intention [21].

This work makes the following contributions:

1. We introduce and study a novel problem of recommending mobile apps for user status text with

implicit intention. To the best of our knowledge, there has been no research work that studied the

same problem as ours.

2. We propose a novel probabilistic model to retrieve mobile apps that satisfy implicit intention of users.

We first infer user intention using parallel corpora we build from social media, and we measure relevance

of mobile apps to the inferred intention in order to rank them. To the best of our knowledge, no research

work has leveraged parallel corpora for user intention analysis.
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3. Since the task has never been performed in the literature, we create a new test data set for evaluating

different models. We employ crowdsourcing to label data with query relevance. The test collection is

available at http://timan.cs.uiuc.edu/downloads.html.

Since our definition of intention is not limited to commercial, our model can be used in various interesting

applications besides personalized recommendation and advertising. For example, it can be used in virtual

assistant systems such as Apple’s Siri and Microsoft’s Cortana to suggest services based on implicit user

query. Our model also can help other systems prevent certain events such as suicide and mass shooting by

analyzing implicit intention in social media user status.

4.2 Related Work

Understanding search intents behind queries has been a great challenge in information retrieval systems.

Traditionally, Web search engines take user queries from a single text input box, which makes the systems

analyze search intents from a short (about two terms per query [39]) list of keywords. In order to better

understand queries, researchers classified queries into different types [9, 43, 53]. For example, Broder [9]

classified queries into three classes: navigational, informational, and transactional. The author showed how

search engines could evolve by supporting different search intents. Contextual search [56, 12], which uses

a user’s contextual information to better capture the user’s search intent, is related to our work in that

we exploit a user’s status text in social media, which contains the user’s implicit intention. However, we

regard each user status text as a single query that contains a user’s (implicit) intention, while contextual

search requires contextual information in addition to the query. Our work is also related to content-based

recommendation systems [80], but our work differs in that we recommend items based on a user’s immediate

needs in a query while they typically recommend items based on the user’s general interests revealed in a

user profile.

Query recommendation (suggestion) has been widely studied to recommend alternative related queries

given a query, in order to help users who would repeatedly rephrase their queries. To recommend queries,

researchers exploited diverse resources such as query logs [3], anchor text [47], and click-through data [13].

Users then choose one of the recommended queries to refine their previous queries. While query recommen-

dation usually requires such interactive processes, query expansion often does not require them and thus

can be regarded as automatic query recommendation [3]. Instead of suggesting alternative queries to users,

query expansion tries to reformulate queries to resolve vocabulary problem [26], and it is surveyed well in

[14]. Our work extends the query expansion in the sense that we automatically adjust a given implicit query
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to an explicit query. However, our work differs from query expansion in that the target query is not supposed

to be an “expansion” of the original query but “conversion” of the original query to predict user intention in

it. Thus, the original query and the expanded query may carry completely different meaning in our work.

Query translation [71] and cross-lingual information retrieval [5] are also related to our work in that our

work can be seen as translating an implicit query to an explicit query. However, our work differs from them

in that the same language is used for the original query and the translated query.

Besides general query intent, researchers studied commercial intention of users in online text, where

commercial intention is defined in [16] as “a user has intention to purchase or participate in commercial

services.” Dai et al. [16] defined online commercial intention as commercial intention behind a user’s online

activities. They developed machine learning models to detect whether a query or Web pages a user visits lead

to commercial activity or not. Ashkan et al. [2] defined a commercial query as a query with the underlying

intention to make a purchase of a product and a noncommercial query as all other queries. Exploiting ad

clickthrough logs, query specific information, and the content of search engine result pages (SERP), they

classified whether a query is commercial or noncommercial, using a machine learning method. They also

predicted ad clickthrough for queries leveraging query intent and the number of displayed ads. Guo and

Agichtein [30] exploited fine-grained user interactions such as mouse movements and scrolling so as to infer

search intent. Such interactions are converted into features to be used as input to classification models,

which classify if a user has research or purchase intent. Our work is related to commercial intent analysis

in that we try to connect queries to products (mobile apps). However, unlike those existing studies, we do

not classify queries into commercial or noncommercial. Instead, we assume a user needs something, and we

recommend products that can satisfy the user needs by inferring user intention from the user’s status text.

Recently, commercial intention analysis on social media has attracted researchers’ attention. Hollerit et

al. [33] performed the first commercial intention detection on social media in order to link product buyers

and sellers. They distinguished between explicit and implicit commercial intention and stated that implicit

intention also has an economic value. They first manually classified tweets into commercial or noncommercial

and further classified commercial tweets into explicit or implicit commercial tweets. Then, they proposed an

automatic method to detect whether a tweet contains commercial intention or not. Yang and Li [107] also

studied commercial intention classification from social media. They developed psychometric measures of

user needs through a crowd-sourced study. Then, they built models to predict user needs based on user text.

Wang et al. [102] classified tweets into six intent categories and one non-intent category. They proposed a

semi-supervised learning algorithm for intent classification. Ding et al. [21] also exploited social media to

identify whether a user text has a commercial intention or not. They found that 625 out of 1,000 commercial
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intention tweets contain implicit commercial intention, and they claimed that detecting implicit commercial

intention is more challenging. Likewise, most of the studies about social medial commercial intention analysis

focused on intention detection in social media. Our work is related to social media commercial intention

analysis since we too analyze intention in social media. However, our goal is to further retrieve mobile apps

that meet user intention, which we infer from the user text.

Previously, few researchers studied product retrieval problem based on commercial intention tweets. Duan

et al. [23] mined intention-related products in online question and answer (Q&A) community data. They used

a pattern-based method to extract candidate products from the answers. Then, using a collocation extraction

model, they measured relevance between intention and products to mine intention-related products. Their

work can be regarded as the most similar one to ours since they connected intention with the products.

However, our work is different from their work in the following aspects. We focus on how implicit queries

can be converted to explicit queries while they do not study such relationship between implicit and explicit

queries. Also, they mine products in the Q&A data, so they cannot recommend products that are not

present in the data. We do not require products present in the parallel corpora, so the parallel corpora can

be used across different domains.

4.3 Problem Definition

Figure 4.1: Mobile app recommendation for social media text with implicit intention.

In order to recommend mobile apps that would satisfy a user’s immediate need that is implicitly expressed

in “user status text”, we study how to infer a user’s intention based on the user’s status text segment. This

is a new entity retrieval task where the query q is a user’s status text segment that implicitly expresses the

user need and the entities are mobile apps A = {a1, ..., aM}. We assume q always includes a user intent that
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is implicitly expressed. Each mobile app a has its text that represents the app. We are also given social

media text data D, which we can leverage to infer the user intent. D consists of implicit intention texts

Dimp and its corresponding explicit intention texts Dexp. Thus, our goal is to retrieve a list of mobile apps

for each q based on their text representations, where the apps are ordered according to their relevance to

the user intent in q. We decide to retrieve mobile apps since they have diverse categories that can satisfy

various user needs. Also, mobile apps can be downloaded or used in a user’s hand so that the user need can

immediately be satisfied. Figure 4.1 illustrates our novel problem.

We distinguish between explicit queries and implicit queries. While explicit queries contain their intention

clearly, implicit queries do not. For example, user status texts such as “I’m hungry”, “I’m so tired”, and “I

have no one to talk to” do not reveal its intention explicitly while they certainly imply the need for something,

and we classify them into implicit queries. The corresponding explicit queries may be “I want food”, “relaxing

music”, and “dating app”, respectively, and these types of explicit queries have been used in traditional search

engines. In this work, we focus on entity retrieval based on the implicit queries since such queries occur

more often in social media text [33, 21].

To the best of our knowledge, retrieval of mobile apps given user status text with implicit intent has not

been addressed in previous work. Park et al. [78] studied mobile app retrieval problem given an explicit

query. While they do not consider implicit queries, we focus on the implicit queries. Baeza-Yates et al.

[4] studied to predict next mobile app that a user would use based on the user’s spatio-temporal contexts.

Thus, their work does not require user text but the user’s spatio-temporal information, which is different

from our work.

Retrieving mobile apps given a user status text with implicit intention is challenging. First of all, social

media text is notoriously noisy [44]. For example, there are lots of spam messages on Twitter, and users often

ignore grammar when they update their status (tweets). Twitter limits user status text to 140 characters at

each time, so it is harder to automatically understand tweets than Web documents, which are usually much

longer. Second, a user status q may not have enough similar text in our parallel corpora, which we build

to infer user intent. Furthermore, even though there exist enough similar user status texts in the corpora,

the hidden intent may be different depending on the users. For example, when a query is “i am hungry”,

some people might mean “i want a recipe book” while others might mean “i want to find nearby restaurants.”

Therefore, we need to carefully approach the problem.
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Figure 4.2: Overview of our approach.

4.4 Methods

In order to retrieve mobile apps relevant to user status text with implicit intention, we leverage social media

to build parallel corpora, which contain implicit intention text and its corresponding explicit intention text.

The overview of our approach is depicted in Figure 4.2. When a user implicitly expresses user needs in a

user status text q, we search for similar text in the implicit intention text in the parallel corpora. Then, we

infer user intention from the explicit intention text that corresponds to the implicit intention text. Finally,

we retrieve mobile apps that are relevant to the inferred intention.

We follow language modeling approach to perform the mobile app retrieval task. In this work, we focus

on how to expand the original query language model to capture user intention in the user status text. Thus,

our goal is to estimate the query language model p(w|q), which is defined as

p(w|q) = (1− γ)pml(w|q) + γp(w|Iq) (4.1)

43



www.manaraa.com

where w is a word, pml(w|q) is a maximum likelihood estimation of the word w being in the query, and

p(w|Iq) is the intention language model for q whose weight is γ. pml(w|q) is computed by count(w,q)∑
w′ count(w′,q)

where count(w, q) is the number of w’s occurrences in q. We define γ as the confidence on our intention

language model. That is, if we are not confident on the estimated intention language model, we give more

weight on pml(w|q), meaning that we do not trust the intention language model and instead trust the original

query language model more. Although we build parallel corpora to “translate” implicit intention text into

explicit intention text, the inferred intention may not be correct for various reasons, which are discussed in

Section 4.3. In such situations, γ can help us adjust our confidence level on the intention language model.

Once we estimate the query language model p(w|q), we retrieve mobile apps relevant to the language

model with KL-divergence retrieval model with Dirichlet prior smoothing as presented in [114]. The model

is believed as one of the state-of-the-art ad-hoc retrieval models and it can naturally adopt query language

model, so we choose it to retrieve mobile apps. The score function to score an app a with respect to q is

thus defined as

score(a, q) =

[∑
w∈a

p(w|q) log
ps(w|a)

δap(w|A)

]
+ log δa (4.2)

where a word w’s smoothed probability ps(w|a), a background language model p(w|A), and the coefficient

δa are defined as

ps(w|a) =
|a|
|a|+ τ

· count(w, a)

|a|
+

τ

|a|+ τ
· p(w|A)

p(w|A) =
count(w,A)∑
w′ count(w′,A)

δa =
τ∑

w count(w, a) + τ

(4.3)

where |a| is the length of a’s text representation, and τ is the Dirichlet prior smoothing parameter. By

retaining only the highest probability words in the query language model and re-normalizing it, it can

process a query very efficiently [113] with inverted index since only apps containing a query language model

word are considered in the formula (4.2). We keep the top 50 words with highest probabilities in the query

language model and re-normalize the probability distribution as in the literature [94]. In the rest of this

section, we will show the steps of estimating the intention language model p(w|Iq).

4.4.1 Building Parallel Corpora From Social Media

Measuring relevance directly between a query and mobile apps may not be ideal when the query does not

explicitly reveal the user intent. We need to understand what the users truly want by writing their status

text. In order to infer user intention hidden in the status text, we leverage parallel corpora that contain
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texts with implicit intent and their corresponding texts with explicit intent. Thus, a user query with implicit

intent is matched with similar text in the parallel corpora to provide us their corresponding explicit intent

texts.

To build such parallel corpora, we employ text data at social media. There exist other useful resources

to build parallel corpora such as chat logs, movie scripts, and question and answering data. However, chat

logs are not generally accessible to public, movie scripts are limited in their amounts, and question and

answering data focus more on general knowledge instead of people’s intention. Meanwhile, a myriad of user

status texts are updated at social media. Not all of them contain people’s need, but even small portion of

all user status texts are plentiful. In addition, due to the nature of social media such as Twitter, the user

status texts are accessible to public. Moreover, because people often leave their “current status” through

social media, their contents can be applied to the task well since we want to infer a user’s immediate need.

Therefore, we choose to employ social media text data to build parallel corpora although they are often very

noisy.

Since social media texts are noisy, we employ relatively strict rules to build parallel corpora. In order

to match implicit intention texts with explicit intention texts, we make templates such as “i want <EXP>

because <IMP>” where <EXP> is explicit intention text and <IMP> is implicit intention text. For

example, a user status text “i want to eat pizza because i am hungry” matches our template with the implicit

intention text being “i am hungry” and the corresponding explicit intention text being “to eat pizza”. In the

template, we also use other words than “want” such as “need”, “should”, and “wanna”. Finally, the texts in

<EXP> and <IMP> of each user status text become documents inDexp andDimp, respectively, while their

association is preserved. To filter out noisy sentences, we force restrictions to the matching sentences. For

example, we don’t let punctuation comes between <EXP> and <IMP>, and we always require sentences

starts with “i”. There may be other templates that can match implicit intention texts with explicit intention

texts. However, to keep high precision instead of high recall, we persist in the templates that are simple yet

relatively precise.

Since we match templates with the social media text, building parallel corpora can be efficiently done

and linearly scalable with respect to the size of the social media text. In addition, it can be done offline, so

this pre-processing step is a one-time effort.

4.4.2 IR Approach to Find Similar Implicit Intention Text

We follow information retrieval approach to match user status text with its similar implicit intention texts

in parallel corpora. We employ Query Likelihood retrieval model [84] with Dirichlet prior smoothing [114],
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which scores an implicit intent document dimp with respect to q with formulas:

score(q, dimp) =
∑

w∈dimp

count(w, q) log p(w|dimp)

∝
∑

w∈q∩dimp

count(w, q) log
ps(w|dimp)

δdimpp(w|Dimp)
+ log δdimp

ps(w|dimp) =
|dimp|

|dimp|+ ω
pml(w|dimp) +

ω

|dimp|+ ω
p(w|Dimp)

p(w|Dimp) =
count(w,Dimp)∑
w′ count(w′,Dimp)

(4.4)

We employ this model since it is one of the standard models, and it is relatively easy to tune the parameter.

In addition, this model can process a query very efficiently (as efficient as vector space models) with the

inverted index. The retrieved documents are sorted by their scores, and we keep top F documents, yielding

Dimp
q , which are regarded as relevant to q. Then, the corresponding explicit intent documents Dexp

q =

{dexp1 , ..., dexpF } are used to infer user intent in the next step. Please note that this process is similar to pseudo

relevance feedback approaches in the literature, but it differs in that it eventually uses the corresponding

explicit intent documents instead of the retrieved documents.

4.4.3 Intention Inference with Intention Topic Modeling

In order to infer the intention language model p(w|Iq) from Dexp
q , we propose to employ intention topic

modeling. That is, we first model various user intentions in Dexp as pre-processing, and then, we infer the

intentions in q using the intention topic models. Employing such intention topic modeling gives us several

benefits. First, we can understand various intentions in a given query. The same query may have different

intentions depending on the user context, and the intention topics can help us understand such different

intentions by inferring multiple intentions. Second, we can remove noisy topics, which impair our intention

language model because social media text data are inevitably very noisy. We can exclude intention topics

that do not occur enough in Dexp
q , which are likely noisy topics. Third, the inferred user intentions can be

understood by humans in a straightforward way. If the resulting intention language model contains multiple

intentions or much noise, humans may not understand the language model well. However, by inferring

intention topics and removing noise in Dexp
q , intention topic modeling can provide a list of intentions in q,

which humans can understand more easily.

We first pre-process Dexp to model user intentions by topic modeling approach, Latent Dirichlet Alloca-

tion (LDA) [8], with parameters α, β, and K. The learned word probability distribution for each intention

topic φ̂k is then given to our Intention LDA in order to infer intentions inDexp
q . The graphical representation

of Intention LDA is depicted in Figure 4.3. The generative story of the explicit intention text in Dexp
q is as
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Figure 4.3: Graphical representation of Intention LDA. F is the number of explicit intent documents for a
query, Nd is the number of words in each document, and K is the number of intention topics.

follows. For each word of explicit intention text d, the author first chooses an intention td,i according to the

query-level intention distribution θq, which is drawn from a Dirichlet distribution with a symmetric vector

α′. Then, the author chooses a word wd,i according to a word distribution φ̂td,i , which is pre-estimated

from Dexp by LDA. This process is repeated for all words in Dexp
q for I iterations.

The collapsed Gibbs sampling formula to infer the intention assignment for each word td,i is defined as

p(td,i|Φ̂,T \d,i,α′) ∝ p(wd,i|td,i, Φ̂) · p(td,i|T \d,i,α′)

∝ p(wd,i|Φ̂td,i) ·
N
\d,i
td,i|Dexp

q
+ α′

NDexp
q
− 1 +Kα′

(4.5)

where T is a set of all intention assignments in Dexp
q , “\d, i” means excluding d’s ith data, and α′ is a

symmetric vector {α′, ..., α′}. N is the number of words that satisfy the superscript and subscript conditions.

Thus, N\d,i
td,i|Dexp

q
is the number of words in Dexp

q assigned with the intention td,i excluding the ith word in

d, and NDexp
q

is the number of all words in Dexp
q .

This model is similar to the regular LDA when it is applied to infer topics in new documents, except that

the intention distribution θq is estimated at a query-level, not a document-level. This is because our data set

is expected to be very sparse. Both implicit and explicit texts consist of a few words, so our documents are

much shorter than the typical documents. This problem of short text results in less word co-occurrence data,

so the topics cannot be estimated well. As addressed in [34], to solve the problem, one can aggregate short

texts to make a large text, if the short texts are believed to have similar topic distributions; this approach

will have the same effect in the end. Similarly, since we can assume that the retrieved texts in Dexp
q for q

have the similar topic distributions, we use the query-level estimation for θq.
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Building Intention Language Model Now, we can build the intention language model p(w|Iq) with

the estimations from the intention topic model.

p(w|Iq) =
∑

t∈Intentions(q)

p(w|t,Dexp
q ) · p(t|Dexp

q ) (4.6)

where Intentions(q) is a set of candidate intentions for q. In order to remove noisy topics as discussed earlier

in this section, we do not utilize all possible topics. We instead keep only top X intentions according to

p(t|Dexp
q ), which is the probability of the intention being in the retrieved explicit intention text. Intuitively,

a few top intentions for q can satisfy general users’ needs, we exclude the other intentions that are likely to

be noisy. The probabilities p(w|t,Dexp
q ) and p(t|Dexp

q ) are defined as

p(w|t,Dexp
q ) =

N̂t|Dexp
q

N̂t|Dexp
q

+ µ
· pml(w|t,Dexp

q ) +
µ

N̂t|Dexp
q

+ µ
· p(w|Φ̂t)

p(t|Dexp
q ) =

N̂t|Dexp
q

+ α′

N̂Dexp
q

+Kα′

(4.7)

where N̂ and Φ̂t are estimations from the intention topic model and the regular LDA, respectively, µ is

the smoothing parameter. p(t|Dexp
q ) is normalized to have its sum equal to one if Tq doesn’t contain

all possible intentions. Here, we smooth p(w|Iq) in a topic-level. That is, for each topic, p(w|t,Dexp
q ) is

smoothed with its posterior estimation from LDA by Dirichlet prior smoothing. Thus, its ML estimation,

pml(w|t,Dexp
q ) =

N̂w,t|Dexp
q

N̂t|Dexp
q

, gets higher weight if more words are assigned with t. When µ = 0, the estimation

is the same as maximum likelihood estimation, and when µ approaches to infinity, the estimation becomes

the same as posterior estimation from LDA. With such topic-level smoothing, we can expect two major

benefits. Firstly, we can dynamically smooth the intention topics depending on the number of assigned

words. Intuitively, if more words are assigned with a topic t, we can more trust its ML estimation since we

have more evidence about t in the textDexp
q . In addition, we can “customize” each intention topic model with

q. When a user status text q contains intentions that are not captured well by existing intention topics, the

per-topic smoothing can help transform existing intention topics into new intention topics with the evidence

present in the retrieved text. Please note that, in order to obtain reliable probability distributions, we run

multiple Markov chains, and take the average values of the topic assignments.

Computational Complexity The complexity of the pre-processing steps, which is modeling user inten-

tions with collapsed Gibbs sampling from Dexp, is O(I ·W ·K) where I is the number of iterations, W is

the number of all words in Dexp, and K is the number of intention topics. Therefore, it is linearly scalable
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with respect to the size of the social media text data (Dexp). This pre-processing can be done offline, thus

a one-time effort.

On the other hand, user intention inference is done online. With collapsed Gibbs sampling, the complexity

is O(I ′ ·Wq · K) where I ′ is the number of iterations for inference, and Wq is the number of all words in

Dexp
q . The complexity of building intention language model is O(K logK + V · T ) including choosing top

T intentions , (O(K logK)), and computing word distribution for T intentions, (V · T ), where V is the

vocabulary size. In general, I ′ is small (e.g., 100), and Wq is small (e.g., 875 words on average) since Dexp
q

does not depend on the size of the whole Dexp. Also, T ≤ K, so inferring user intention and building

intention language model has an average complexity of O(K)+O(K logK+V ·T ) = O(K(logK+V )). The

vocabulary size V sublinearly increases as the size of data increases, so this process is sublinearly scalable

with respect to the size of data. As discussed in multiple places of this section, other components of the

system are also scalable and perform efficiently, so the whole process is scalable and performed efficiently.

4.5 Experimental Setup

4.5.1 Data Set

In order to perform experiments for the task, we need data sets such as mobile apps, parallel corpora from

social media, and the test queries and their relevance data. We use mobile app data in [78], which were

crawled from Google Play App Store4. We omitted apps in game categories, which takes about 38% of the

whole data, since our goal is to recommend more practical solutions while games are for entertainment in

general. The resulting data set contains 26,832 apps in total. Since user status text is often written in an

informal way by people in general, we also use apps’ user review texts, which are also often written in an

informal way. On average, there are 31.4 reviews for each app. The experiment results in this work will be

based on concatenated text of app descriptions and user reviews unless otherwise specified. We tokenized

text into word tokens and lemmatized them using Stanford CoreNLP [66] version 1.3.5. We lowered all word

tokens and removed punctuation, stopwords, and word tokens that appear in less than five app descriptions

(and five user reviews if reviews are also used). More statistics of the resulting data are shown in Table 4.1.

Note that about 30% of vocabulary is omitted when we add user reviews; this is because many words in app

descriptions are indeed not used in user reviews.

Since we study a new task that has not been studied before, there is no existing test collection or parallel

corpora available to use. In the rest of this section, we describe how we collect such data in detail.
4https://play.google.com/store/apps
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Table 4.1: Statistics of text data in apps without reviews and with reviews.

without reviews (¬R) with reviews (R)
Average number of tokens 116.5 395.6
Total number of tokens 3,124,611 10,615,767
Vocabulary size 20,293 14,196

Collecting Tweets to Build Parallel Corpora

We already described how to build parallel corpora with social media text data in Section 4.4.1. Here, we

describe how to collect tweets and the details of the data set. Among various social media, we decided

to crawl the data from Twitter mainly because plenty of tweets are available to public, which means that

more user status data would match our templates. We searched for tweets containing our keywords using

Twitter’s search function. The query we used is, for example, “i want” because until:YYYY-MM-DD, which

is supposed to search for tweets containing the word because and the exact phrase i want until the specified

date. We crawled tweets dated between June 6, 2006 and November 4, 2015. Then, we removed tweets that

do not satisfy the templates in Section 4.4.1, and cleaned the texts in the same way as the app text data are

cleaned. We excluded tweets that do not have any word tokens in implicit or explicit texts. We also allowed

only one (implicit text, explicit text) pair if there exist exactly the same pairs, to avoid noise. Finally, we

obtained 1,609,894 (implicit text, explicit text) pairs from 1,115,948 unique Twitter users where implicit text

contains 2.7 word tokens and explicit text contains 2.5 word tokens on average, and its vocabulary contains

35,695 unique words.

Collecting Representative Queries

We need to obtain representative queries so as to evaluate whether the proposed model is indeed useful.

Unfortunately, such test queries and their relevance data do not exist yet, so we create our own test collection.

It is, however, challenging to obtain “representative” user status text segments. We cannot simply rank tweet

texts based on the number of tweets that contain exactly the same content or similar content in the whole

tweet data set; people use different vocabulary to describe similar statuses, and the high-ranked tweet texts

may have similar themes. Thus, we employ topic model to first find main themes in tweets and choose a

representative tweet from each theme. We crawled tweets containing a keyword “i” so that the retrieved

tweets are likely to be about the user’s own status. The crawled tweets are dated between June 20, 2015 and

August 18, 2015, and after cleaning them, we obtained 960,874 tweets. With LDA, we modeled 50 topics and

ranked tweets with KL-divergence scoring function in formula (4.2) for each topic. After removing nine topics

that are mostly spams, we asked a domain expert to extract the first user status segment that implicitly
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expresses user need, starting from the most relevant tweets, for each of the 41 topics.5 We recognize that

implicitly expressed user needs are related to the user’s mood, so we added mood words from [104], where

emotions words are assigned for each of eight emotions. To choose 12 mood words from them, we omitted

the words that do not overlap with the existing queries and that occur less than 400 times in the tweets

we crawled. Then, we made a query with those words by the template “i am <word>” or “i feel <word>”,

whichever occurs more according to Google’s exact phrase search. After removing nine queries that are

discussed in the next section, we compiled 44 queries, each of which contains around 5.5 words on average.

Collecting Query Relevance Data

Since labeling all the retrieved mobile apps from various models for each query is too expensive, we created a

pool. In specific, for each query, we pooled together the top 20 retrieved apps from each of multiple retrieval

models with various parameter settings, in order to acquire enough apps that are most likely relevant. We

then employed a crowd-sourcing service, CrowdFlower6, to label the (query, app) pairs at affordable price.

Each worker was asked to read a query and a corresponding app’s name and description, and follow the link

to the app store page if needed. Then, the worker was paid three cents to judge if the app satisfies the user

need on three relevance levels (no satisfaction at all (0), makes sense with some context (1), and perfect

satisfaction (2)).

To ensure the quality of judgments, we let each (query, app) pair be judged by three annotators, and

we used “quiz” function7 in CrowdFlower to remove users who do not score high enough on the quizzes we

made. The three resulting judgments for each (query, app) pair were averaged to be used as a relevance

score. We removed nine queries that retrieved less than five perfectly relevant apps (by majority vote) since

they can harm the reliability of evaluation results.

In total, 156 workers were employed through the crowd-sourcing service, and each of them made 177.0

± 117.5 judgments where the number after ± is standard deviation. After all, we obtained 180 ± 59.5

aggregated relevance judgments on average for each query. We measured the inter-annotator agreement by

Fleiss’ kappa, which was 0.31, where the value between 0.21 and 0.4 can be interpreted as fair agreement

according to [50].
5Note that the domain expert had to go through many tweets for some topics that contain only few implicit intentions.
6http://www.crowdflower.com/
7A worker’s judgments are stored only if the worker passes with accuracy above 75% from the initial quiz with eight questions

and maintains the accuracy above 75% while the worker is given one random quiz question for every three regular questions in
random order.
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4.5.2 Evaluation Metrics

The relevance judgments for each (query, app) pair by three annotators are averaged, and the aggregated

real value ranges between 0 and 2. Thus, we employ Normalized Discounted Cumulative Gain (NDCG) [40]

as the evaluation metric since it can handle multiple-level relevance data while metrics such as Mean Average

Precision cannot. We measure NDCG at 3, 5, 10, and 20 top retrieved apps to reflect information needs

of various users. Note that NDCG@3 is more important for this task than for traditional Web search since

only a few mobile apps can fit a mobile phone screen well, and many social media users use their mobile

phones to connect to social media.

4.5.3 Baseline Methods

We have two types of baseline methods: models that do not leverage parallel corpora and models that do.

The models not leveraging parallel corpora include Query Likelihood Language Model (QL) and Relevance

model [52], which are standard information retrieval models based on language model. We use Query

Likelihood Language Model with Dirichlet prior smoothing as described in Section 4.4.2 where we score an

app a instead of dimp. Since our Intention model expands the original query with online processing, we use

Relevance model (Model 1) to be fair, which is one of the state-of-the-art query expansion methods with

online processing. The Relevance model first retrieves apps with original query using QL. Then, it expands

the original query with the descriptions of the top Fa retrieved apps.

The models that leverage parallel corpora are closely related to cross-lingual information retrieval models

[5] because parallel corpora are usually exploited for two different languages. We employ Translation model

and Cross-Lingual Relevance Model (CL-Relevance) [51]. Translation model employs IBM Model 1 [10]

to estimate word translation probabilities from Dimp to Dexp. Then, it builds the query language model by

p(w|q) =
∑

w′∈V (Dimp)

tr(w|w′)p(w′|q) (4.8)

where V (Dimp) is a vocabulary set in Dimp, and tr(w|w′) is the translation probability from w′ to w. Thus,

the resulting query language model would consist of words in Dexp that are semantically associated with

the original query. CL-Relevance is an extension of the Relevance model and is one of the state-of-the-art

cross-lingual information retrieval models. Similar to our Intention model, CL-Relevance leverages the

parallel corpora to retrieve similar intention texts from Dexp given a query as in Section 4.4.2, and then, it

estimates the query language model from the top F intention texts.

Translation and CL-Relevance models are designed for cross-lingual information retrieval. However, our
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task involves only one language although we built the parallel corpora with Dimp and Dexp, which means

that we can incorporate the original query into the estimated query language model since they are made of the

same language. We interpolate the original query language model with the estimated query language model

with a fixed coefficient γ as in (4.1), where the estimated query language model from Translation or CL-

Relevance becomes the intention language model. The resulting models for Translation and CL-Relevance

models are called Translation+ORIG and CL-Relevance+ORIG, respectively.

4.5.4 Parameter Setting

We tuned the parameters with a data set containing both app descriptions and user reviews, and we use

the data set unless otherwise specified. The parameter values are shown in Table 4.2, and we use those

values in this work unless otherwise specified. To model topics in Dexp
q with LDA for Intention model, we

run 1,000 Gibbs sampling iterations. We use three Markov chains with 100 Gibbs sampling iterations each

for Intention LDA. We use GIZA++ package [72] for Translation model, where we use IBM Model 1 with

default parameter values.

Table 4.2: Parameter setting for QL (Q), Relevance (R), Translation (T), Translation+ORIG (TO), CL-
Relevance (C), CL-Relevance+ORIG (CO), and Intention (I) models.

Value Models
γ 0.9(TO), 0.8(CO, I) TO, CO, I
τ 1,000 Q, R, T, TO, C, CO, I
ω 100 C, CO, I
F 350 C, CO, I
Fa 50 R
λ 0.8(R), 0.5(C, CO) R, C, CO
α 0.01 I
β 0.01 I
K 300 I
α′ 0.1 I
X 5 I
µ 5 I

4.6 Result Analysis

4.6.1 Qualitative Analysis

Table 4.3 shows top intention topics obtained from social media user’s explicit intention text Dexp. It seems

that the intentions are closely related to people’s everyday life such as cleaning room, watching TV shows,

eating or making food, playing sports, and supporting sports teams. For each query, we infer the most
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Table 4.3: Top five intention topics by LDA. Words in each column represent a topic.

room show eat play win
clean watch make football super
fridge tv chicken team seahawks
tidy stop cheese player bowl
house netflix soup soccer raven
living reality egg basketball bronco
mini series fries game ravens
closet ellen potato baseball 49ers
lock movie bacon sport lose
bigger program mac fantasy simply

Table 4.4: Top query language model words and their probabilities estimated from each model for a query
“my phone died”. MLE indicates maximum likelihood estimation of the query.

MLE Translation+ORIG CL-Relevance+ORIG Intention
pretty 0.25 work 0.11 sleep 0.26 sleep 0.34
tire 0.25 pretty 0.08 bed 0.09 bed 0.13
work 0.25 day 0.07 work 0.08 nap 0.06
today 0.25 today 0.07 today 0.07 work 0.06
- - tire 0.06 pretty 0.07 today 0.06
- - tomorrow 0.05 tire 0.07 tire 0.05
- - sleep 0.04 stop 0.06 pretty 0.05
- - feel 0.04 play 0.05 plan 0.03
- - hour 0.02 friend 0.02 start 0.02
- - week 0.02 hour 0.01 back 0.02
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Table 4.5: Top five intentions inferred from our Intention model for each query. Each intention is represented by its top five words.

query i’m getting sad i feel sleepy i feel lonely
happy, make, feel, smile, sad sleep, back, wake, day, home friend, make, internet, talk, guy
hug, give, kiss, big, nus coffee, drink, energy, cup, caffeine buddy, cuddle, friend, texting, text

top intentions listen, stop, song, radio, station nap, stop, home, school, work watch, movie, stop, film, cry
listen, music, stop, play, ipod sleep, bed, start, earlier, early follow, fan, account, friend, 5so
life, people, thing, positive, stop late, stay, stop, night, sleep hug, give, kiss, big, nus

query i got a bad feeling about today i spend way too much money i am hungry
start, people, listen, advice, hang shopping, store, grocery, shop, work eat, start, breakfast, dinner, lunch
god, pray, jesus, lord, prayer stop, online, buy, thing, stuff food, eat, stop, make, bring

top intentions cry, tear, joy, happiness, happy money, job, give, make, lot eat, stop, food, hungry, bore
medicine, sleep, doctor, med, pain card, credit, gift, buy, give eat, make, chicken, cheese, soup
cry, ball, curl, bed, die job, find, asap, pay, good pizza, eat, order, work, food

55



www.manaraa.com

Table 4.6: Top retrieved apps from each model for query “i’m pretty tired after work today”.

QL Translation+ORIG CL-Relevance+ORIG Intention
Wheel Tire Calculator Sleep Cycle Sleep Cycle alarm clock Sleep Better with Runtastic
Tires Plus Sleep Cycle alarm clock Sleep Diary Pro Sleep Diary Pro
Pregnancy Workout Today Sleep Hypnosis: Cure Insomnia Sounds for Baby Sleep Music Sleep Cycle
Tire Calculator PRO Nature sounds to sleep Sleep Analyzer Sleep Cycle alarm clock
Pretty Calculator Horoscopes for Facebook Sleep Better with Runtastic Sleep as Android Unlock
ForzaTune 5 Sleep Better with Runtastic Sleep Cycle Sounds for Baby Sleep Music
Verizon Roadside Assistance Squats Sleep Talk Recorder Relax Melodies: Sleep & Yoga
Boxing Interval Timer Fetch: Your Buying Assistant Sleep as Android Deep Sleep and Relax Hypnosis
7-Eleven, Inc. SleepyTime: Bedtime Calculator SleepBots - Sleep Cycle Alarm Sleep Analyzer
Shut Up Button Dog Licker Live Wallpaper FREE Sleep as Android Unlock Relax Music & Sleep Cycle
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such as “budget manager”.

Table 4.4 shows the query language models estimated by different methods for a query “i’m pretty

tired after work today.” While MLE gives the same probability to each keyword of the query, the other

models expand the query language model with our parallel corpora. The language model estimated by

Translation+ORIG model does not seem to highlight words that are important specifically for the query.

As discussed in the next section, the intention language model estimated by Translation+ORIG model is in

more general context. For example, words such as “pretty”, “tomorrow”, “hour”, and “week” do not have to

be emphasized much, and words such as “sleep” and “bed” need to be emphasized more for the query. CL-

Relevance+ORIG model assigns more weights to such words, and Intention model assigns even more weights

to them, so they retrieve more relevant apps. Table 4.6 shows the top retrieved apps for the same query.

QL, which assigns the same weight to each query word as MLE does, retrieves many irrelevant mobile apps

such as “Wheel Tire Calculator”, “Tires Plus”, “Pregnancy Workout Today”, and so on. Translation+ORIG

model retrieves apps such as “Horoscope for Facebook”, “Squats”, “Fetch: Your Buying Assistant”, and so

on, which do not seem to satisfy the user intention in the query, and this can be expected from its poorly

estimated query language model. Most apps retrieved by CL-Relevance+ORIG and Intention models are

satisfying since they could build the query language models well as shown in Table 4.4.

4.6.2 Quantitative Analysis

Table 4.7: NDCG measures for baseline models and our Intention model. QL and Relevance models do not
leverage parallel corpora while Intention model does. ¬R does not exploit user reviews of apps while R does.
(% improve.) indicates Intention model’s percentage improvement over Relevance model. The symbols ∗ and
◦ indicates statistical significance (student’s two-tailed paired t-test with p<0.05) over QL and Relevance,
respectively.

Data Model N@3 N@5 N@10 N@20
QL 0.404 0.420 0.415 0.418

¬R Relevance 0.437 0.430 0.441 0.461
Intention 0.531∗◦ 0.534∗◦ 0.527∗◦ 0.515∗
(% improve.) +21.5% +24.2% +19.5% +11.7%
QL 0.445 0.438 0.440 0.438

R Relevance 0.463 0.460 0.444 0.455
Intention 0.596∗◦ 0.585∗◦ 0.564∗◦ 0.560∗◦
(% improve.) +28.7% +27.2% +27.0% +23.1%

Table 4.7 compares Intention model with models that do not leverage our parallel corpora, and it also

shows measures when reviews are used and not used. Relevance model indeed outperforms QL with its

query expansion from the app data set. Intention model significantly outperforms QL and Relevance models

because it can infer user intention by leveraging the parallel corpora. Intention model improves the other
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Table 4.8: NDCG measures for models leveraging parallel corpora. (% improve.) indicates Intention model’s
percentage improvement over CL-Relevance+ORIG. The symbols ∗ and ◦ indicates statistical significance
(student’s two-tailed paired t-test with p<0.05) over Translation+ORIG and CL-Relevance+ORIG, respec-
tively.

Data Model N@3 N@5 N@10 N@20
Translation 0.480 0.486 0.480 0.498
CL-Relevance 0.376 0.374 0.363 0.386

¬R Translation+ORIG 0.468 0.472 0.472 0.474
CL-Relevance+ORIG 0.477 0.470 0.473 0.484
Intention 0.531◦ 0.534∗◦ 0.527∗◦ 0.515
(% improve.) +11.3% +13.6% +11.4% +6.4%
Translation 0.483 0.481 0.478 0.482
CL-Relevance 0.425 0.409 0.395 0.406

R Translation+ORIG 0.519 0.519 0.503 0.510
CL-Relevance+ORIG 0.526 0.513 0.510 0.507
Intention 0.596◦ 0.585◦ 0.564∗◦ 0.560◦
(% improve.) +13.3% +14.0% +10.6% +10.5%

models especially for NDCG at 3 and 5, which is desirable for mobile environment. In general, exploiting

user reviews is shown to be beneficial for product search, which is also found in [78]. Interestingly, when

reviews are used, Intention model’s percentage improvement over Relevance model increases from 19.2%

to 26.5% on average. Intuitively, while app descriptions are written by app developers, user reviews and

user status texts are written by ordinary people with similar vocabulary, so the effect of exploiting parallel

corpora can be amplified by using user reviews.

Table 4.8 compares models leveraging our parallel corpora. Again, it seems that all the models except

Translation model improve when reviews are used. CL-Relevance does not perform well because each text

pair in our parallel corpora is relatively short and noisy so that the top retrieved text from the corpora may be

corrupted with noise. We mix the original query language model and the query language model estimated

from CL-Relevance with linear interpolation because our task involves only one language as discussed in

Section 4.5.3. When it is mixed with the original query language model as CL-Relevance+ORIG, it improves

quite much, which means that the text in parallel corpora can be very helpful if properly used. Translation

model outperforms CL-Relevance as itself, which means that query expansion with the whole parallel corpora

may be better than that with only the top retrieved texts from the parallel corpora, when the parallel corpora

is relatively noisy. However, when Translation model is mixed with the original query language model as

Translation+ORIG, it performs comparably with CL-Relevance+ORIG. Our Intention model significantly

outperforms all the other models in general. Although Intention model infers user intention from only top

retrieved texts from the parallel corpora, it effectively removes the noisy intentions, yielding good results.

In order to filter out noisy intentions, Intention model uses only top X intention topics and estimates
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Figure 4.4: NDCG measures for different X (left) and µ (right) values of Intention model.
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60



www.manaraa.com

intention topics with per-topic smoothing. Figure 4.4 depicts Intention model with different number of top

intention topics (X) values and different amount of smoothing (µ). The idea of removing unpopular intention

topics, which are regarded as noisy topics, seems to yield better results indeed, especially for NDCG at 3

and 5. When we keep only one or two top intentions, Intention model does not perform well. However, its

performance is relatively good when X is between 3 and 5, and then the performance degrades as it keeps

more intentions. Meanwhile, we can assign more weights to the intention topics pre-estimated from LDA by

increasing µ value. The figure shows that adding a small amount (µ between 1 and 5) of the pre-estimated

topics helps a little, but adding too much of them worsens the performance. From the results, it seems that

removing noisy intentions plays a more important role than exploiting pre-estimated topics in estimating a

good intention language model.

Translation+ORIG, CL-Relevance+ORIG, and Intention models, which leverage the parallel corpora,

combine the original query language model and the intention language model, estimated from the parallel

corpora, with a linear interpolation parameter γ as in equation (4.1). When γ = 0, the query language

model becomes the original query language model pml(w|q), and when γ = 1, the query language model is

purely the intention language model from the parallel corpora. That is, when γ = 1, Translation+ORIG and

CL-Relevance+ORIG models become Translation and CL-Relevance models, respectively. Figure 4.5 depicts

the models with different γ values. We can see that relying more on the intention language model results in

better performance in general, which means that leveraging our parallel corpora is indeed important for the

task. Intention model seems to outperform the other models with almost all γ values, even when the query

language model comes entirely from the parallel corpora (γ = 1). Interestingly, all the models perform better

when the original query language model is incorporated than when it is not. This means that the original

query language model and the intention language model have their own strong points, so their combination

makes even better results.

4.7 Conclusions and Future Work

In this work, we studied the problem of mobile app retrieval for social media text that contains a user’s

implicit intention. Recommending mobile apps for such text can be very useful for both users and app

developers, but no previous work has addressed this novel problem. We proposed how to build parallel

corpora that can convert implicit intent text into explicit intent text, and we proposed the Intention model

that leverages the parallel corpora to infer user intent to recommend satisfying mobile apps. In specific,

Intention model infers user intention via Intention LDA and builds an intention language model by filtering
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noisy intentions out. Evaluation results show that (i) leveraging our parallel corpora built from social

media is indeed beneficial for the task, (ii) exploiting user reviews further amplifies the effects of leveraging

the parallel corpora, (iii) removing noisy intentions plays an important role in Intention model, (iv) the

original query language model and the estimated intention language model of Intention model complement

each other well, and (v) intentions inferred from Intention model help us understand various user intentions

in a fairly straightforward way.

There are limitations in this work. When we collect the parallel corpora, we exploited templates to match

texts with certain patterns. Those templates were manually generated in order to ensure high precision.

However, we do not know how generalizable they are for other similar tasks because we did not investigate

accuracy of the collected corpora. Also, the templates do not ensure high recall since there may be many

more templates we can exploit. When we evaluate the retrieved mobile apps from the suggested methods,

we tested them with a relatively small number of queries since it is expensive to obtain query relevance data.

More queries along with their relevance data would help us ensure higher validity of the evaluation results.

Our work can be further extended in several ways. First, while we recommended mobile apps, one can

recommend other entities such as products of other types or services, leveraging our parallel corpora. Second,

one can recommend mobile app pages instead of mobile apps so that a user can open a needed app page

right away by analyzing user text. Lastly, since our parallel corpora made from social media are domain

independent, one can leverage the corpora to other applications such as chat bots or virtual assistants to

understand user intention. Our test collection is released to public so that it enables further study of this

new problem.
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Part II

Assisting Users in

Making Purchase Decisions

63



www.manaraa.com

Chapter 5

SpecLDA: Modeling Product Reviews
and Specifications to Generate
Augmented Specifications1

5.1 Introduction

In the previous two chapters, we discussed how we can assist users in discovering products. Specifically, we

proposed how we can improve search accuracy using user reviews, and how we can recommend products

based on social media text that contains implicit intention. Once a user finds a product that matches the

user’s intention, the user will look into the details of the product or look for other users’ opinions so that

the user can make a purchase decision. For example, users would first view descriptions or specifications of

products in order to know details of the products they found. If the products still match the users’ interests,

then the users might look for other users’ opinions on the products. Then, the user would make a purchase

decision; if the user still likes the product, the user would purchase the product, but if not, the user would

look for another product. In this chapter, we generate augmented specifications to help the users understand

specifications so that they can make purchase decisions more easily.

When people purchase a product from an online store, they are usually provided product-related infor-

mation such as product description, product images, and user reviews. Such information contains details of a

product or other consumers’ opinions, and it can help the consumers make purchase decisions. Often, prod-

uct specifications are also provided to specify its features in an organized way, especially for high-technology

products that consist of several electronic components. However, it is difficult to understand what the con-

tents of product specifications imply when the consumers are unfamiliar with them. For example, when

novice consumers read a digital camera’s specifications, they probably do not have any idea what the value

“TTL phase detection” of the feature “Auto Focus” means since they are not familiar with the feature value.

Not only such consumers are unfamiliar with what the feature value is, but also they do not know how it

truly means to them. In order to choose a product with the “right” value of a feature, they would like to hear

direct experience from other consumers who own a product equipped with it, which may answer questions

such as “is the feature value preferred by others?” and “is the feature considered important by others?”
1Part of this work has been published in [79].
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Finding out what people have said about a feature or a feature value across different products is a laborious

task. The problem is worsened by the fact that many new high-tech products increasingly have more new

features. For example, a digital camera Canon EOS 70D has 79 features in CNET’s product specifications

page2. Thus, it is our goal to automatically augment product specifications through mining knowledge from

product reviews and specifications across different products. Specifically, an augmented specification would

show relevant review sentences, feature importance, and product-specific word list for each feature. An

example of augmented specifications is shown in Figure 5.1.

megazoom

  

MOV
 

• Movie mode is .MOV which is not the 

standard mpg.

• Only fault is that you can only save video 

in .mov format.

• Without spending some dough on a movie 

editor that supports .mov I can't edit any of 

the pictures with some of the commonly 

available free video editors such as Windows 

Movie Editor.

Feature ValueImportance

Product-specific

Words 70d screen lcd

Figure 5.1: An example of augmented specifications for a digital camera Canon EOS 70D.

The augmented specifications can be very useful for consumers. For example, the following sentence is

retrieved from a review of a product with the feature-value pair (“Battery – Supported Battery”, “Canon

LP-E6 Li-ion rechargeable battery”). The 60D uses the LP-E6 battery like the 7D, which is a nice feature as

this battery can often last through a full day of shooting. Through reading such user experience, consumers

can learn about the feature value, and it will help them choose a proper product without reading all the

reviews of products with that battery. In addition, the augmented specifications can provide how important

the feature “Battery – Supported Battery” is to other customers and provide what characteristics are special

for a certain product.

To the best of our knowledge, no previous work has addressed the novel problem of mining relevant

opinions for a feature value in specifications across different products. Despite widespread existence of
2http://www.cnet.com/products/canon-eos-70d/specs
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product specifications on the Web, only a few researchers studied specifications [117, 7, 112, 103, 82], and

the goals of them are different from ours. This work makes the following contributions:

1. We introduce and study a novel problem of mining product reviews (unstructured text) and product

specifications (structured text) jointly to discover relevant review sentences to each feature value in

product specifications.

2. We propose a new probabilistic topic model, SpecLDA, to solve the proposed mining problem. SpecLDA

can also infer each feature’s importance and each product’s specific theme. SpecLDA is general so that

it can be applied to mine other kinds of text data and the companion structured data for alignment

of values in structured data with sentences in text data.

3. We create a new data set for evaluating the new task and conduct experiments to show that the pro-

posed SpecLDA outperforms a related state-of-the-art model for extracting relevant review sentences.

The potential impact of our model is significant. The augmented specifications can benefit product

manufacturers as well as consumers. After learning what customers say about a feature or a feature value

of products in a current market, they may focus on important features and develop components desired

by consumers. In addition, since our suggested approach can be applied to any data set consisting of

unstructured text and specifications (key-value pairs) of entities, it can be employed in other problems.

5.2 Related Work

Finding opinions from a text data set have been widely studied, and several surveys summarized existing

work [45, 59, 76]. Most of the studies performed research on product review [18, 37] or Weblog [68] data

sets since people leave rich opinions on them. In order to find the object of opinions and to mine opinions

in a more effective way, aspect-based opinion mining and summarization [37, 85, 101] has been studied as

a main stream in the field. Our work is related to the aspect-based opinion mining as we retrieve a user’s

review text on a particular product aspect. To find the aspects of a product, many studies [115, 68, 96]

applied topic models [8, 32], which find latent topics from a text corpus. While most of the existing topic

model-based approaches find latent topics without constraints on the topics, we utilize prior knowledge on

the topics so that the topics and the specifications can match. Lu and Zhai [63] also used semi-supervised

topic modeling with pre-defined topics, but their goal is to find opinions for a product aspect (feature), while

we find opinions for each value of a product feature so that we can mine knowledge about feature values

across different products. Most existing studies in this line of research mine opinions on a product feature,
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either pre-defined or latent, but we mine opinions for a smaller grain of topic, a feature value.

Although product specifications have been available in many e-commerce Web sites, only a limited number

of studies employed them for product review analysis. Zhou and Chaovalit [117] established Ontology-

Supported Polarity Mining (OSPM), which takes advantage of domain ontology database from IMDb3, and

their goal is sentiment classification on reviews. However, they studied only movie properties (features),

not feature values. Bhattattacharya et al. [7] also used IMDb’s structured data, but their goal is document

categorization. Yu et al. [112] employed product specifications and reviews to build an aspect hierarchy, but

they did not study feature values. Wang et al. [103] and Peñalver-Martínez et al. [82] also used product

specifications to summarize product features, but neither of them studied feature values.

Modeling product reviews and specification simultaneously has been attempted in Duan et al. [22] with

an extended PLSA model. However, the goal in Duan et al. [22] is to bridge the vocabulary gap in product

search whereas our goal is to mine relevant review sentences to augment product specifications. Moreover,

our proposed SpecLDA can better capture the feature structure in product specifications than the model

used in Duan et al. [22] since their model does not consider hierarchy structure in specifications.

5.3 Problem Definition

The proposed new text mining problem is defined as follows. We are given M products P = {P1, ..., PM}

with reviews R, review sentences T , and specifications S. For each product p, there are specifications Sp

and reviews Rp consisting of sentences T p. Specifications Sp of a product p is defined as Sp = {s|s ∈

S and s is part of p}, where a specification s is a feature-value pair (f , u), and S is a set of all possible

feature-value pairs. Our goal is (1) to mine a set of sentences {t1, ..., tk} for each specification (f, u), (2)

predict importance for each feature f , and (3) mine a set of product-specific words for each product p. Please

refer to Figure 5.1 as an example of output that we hope to generate.

This is a new problem that has not been addressed yet in previous work, and it can be regarded as a step

toward an interesting new kind of mining problems involving both text data and the associated structured

data. The problem is challenging for the following reason. The vocabulary used in specifications and reviews

for a feature or a feature value may be different. Even if the vocabulary used in the reviews are the same

as that in specifications, it is not known which words of the vocabulary people prefer to use to indicate a

certain feature value. If we just use words of the given feature value, we may miss many of the relevant

review sentences. Moreover, the data space is sparse since there may be many feature values for each of

many features. Thus, reliable estimation of specifications model is desired.
3http://www.imdb.com
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Figure 5.2: Graphical representation of DuanLDA and SpecLDA–.

5.4 Methods

Generating augmented specifications using reviews is a new problem. There is no existing method that can

be directly used to solve this problem. We propose to solve the problem by using a topic model for capturing

specifications words in review text while imposing a prior defined based on the product specifications. This

idea is similar to the extended PLSA model proposed in Duan et al. [22] for product search. We thus first

discuss how we can adapt this model to solve our problem.

5.4.1 DuanLDA

In order to retrieve query-relevant products, Duan et al. [22] developed a probabilistic method that models

product reviews and specifications. Their model can be regarded as a semi-supervised PLSA model with

specifications as pre-defined topics and concatenated reviews as documents, which maximizes the following

log-likelihood function of the whole data set:

l =
∑
p∈P

∑
w∈V

c(w, rp) log
[
λp(w|φB) + (1− λ)

∑
s∈S

p(w|s)p(s|p)
]

(5.1)

where c(w, rp) is a word count in concatenated reviews rp for p, and φB is a background language model. λ

is a parameter for choosing either φB or the predefined topics Sp, and V is a vocabulary set for the corpus.
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As discussed in [8, 113], LDA has several advantages over PLSA, so we convert their model to LDA

version and call it DuanLDA. The graphical representation of DuanLDA is shown in Figure 5.2a. There are

M product documents, where each document is a concatenated review for p, and there are Np words for

each document. s is a specification (a feature-value pair) topic, and there are |S| possible specifications. The

generative story for each word is as following. When an author writes a review word wp,i at ith position of

product document p, the author chooses a background topic or specification topics according to switch xp,i,

which is determined by a parameter λ. If the background topic is chosen, wp,i is drawn from background

language model φB ; otherwise, a specification sp,i is chosen according to θp, and wp,i is chosen according to

φsp,i . To incorporate pre-defined topics into LDA, product-specific topic distributions α′p and topic-specific

word distributions β′z are used to draw θp and φsp,i . Specifically, θp is drawn from Dirichlet(αα′p) and

φsp,i is drawn from Dirichlet(ββ′sp,i), and how to generate those prior distributions is explained later in this

section.

The document language model for DuanLDA is defined by

plda(w|p, λ, θ̂, φ̂) = λp(w|φB) + (1− λ)

|S|∑
s=1

p(w|s, φ̂)p(s|p, θ̂) (5.2)

The probability of xp,i = 0, which chooses background language model, is determined by λ and the corpus

W , which is

p(xp,i = 0|W , λ) ∝ λp(wp,i|φB)

∝ λ
Nwp,i∑
w′∈V Nw′

(5.3)

where N with superscript and/or subscript means the number of words satisfying the superscript and

subscript conditions. A Collapsed Gibbs sampling formula to choose sp,i when xp,i = 1 is defined as

p(xp,i = 1, sp,i = z|wp,i,W \p,i,S\p,i, λ, α,α
′
p, β,β

′
sp,i)

∝ (1− λ)p(wp,i|sp,i = z,W \p,i,S\p,i, β,β
′
z)p(sp,i = z|S\p,i, α,α′p)

∝ (1− λ)
N
\p,i
wp,i|z + |V |ββ′z,wp,i

N
\p,i
z + |V |β

N
\p,i
z|p +Kαα′p,z

N
\p,i
x=1|p +Kα

(5.4)

where \p, i exclude a word at ith position of p.

Prior Generation In order to automatically generate priors β′z for each topic z, we take an approach

similar to that in [22]. However, the resulting distribution from their prior generation is quite even, so it
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does not distinguish important words from unimportant words well. Thus, we assume the prior words follow

Zipf’s law distribution and adjust p(w|f) according to it. Specifically, from the prior p(w|f) obtained in [22],

we define new word prior p′(w|f) as

p′(w|f) =


p(w|f)∑

w∈V (f) p(w|f)
∑|V (f)∩V |
i=1 Zipf(i) if w ∈ V (f)

Zipf(rankf (w) + |V (f) ∩ V |) otherwise
(5.5)

where V (f) is a vocabulary in f , V is a vocabulary in the review corpus, rankf (w) is w’s rank in p(w|f)

excluding words in V (f), and Zipf’s law distribution function Zipf(i) is defined as Zipf(i) = 1/is∑|V |
n=1 1/ns

, where s is a parameter characterizing the distribution. Basically, p′(w|f) keeps the rankings in p(w|f)

but substitutes probabilities of non-feature words with Zipf’s probability. p(w|f) of feature words are

redistributed to p′(w|f) having sum of them equal to Zipf’s probability sum for first |V (f) ∩ V | words.

Then, we assign β′s,w = p′(w|f) for s whose feature is f . Also, we generate document-topic prior α′ based

on specifications in each product; if a feature-value pair s is not present in a product p, we assign zero to

α′p,s, and otherwise, we assign α′p,s a probability, which is uniform among all present feature-value pairs.

5.4.2 SpecLDA: A topic model for joint mining of product reviews and

specifications

DuanLDA has several deficiencies: (1) it considers only specification topics, (2) the prior amount (|V |β)

is uniform for all topics, (3) it does not fully take advantage of the specifications structure. We develop

SpecLDA– (Figure 5.2b) that improves the points (1) and (2) and mines product-specific words. Then, we

we further address point (3) and propose SpecLDA.

SpecLDA–

Review Topics Product reviews may have topics that are not in specifications; for example, value, design,

or ease of use is not listed in specifications, but they may be mentioned in reviews. DuanLDA expects them

to be captured by background language model, but it assumes that every product document has the same

proportion of background topic, which may not be true. We thus remove background topic and add |E|

review topics, resulting in all topics {s1, . . . , s|S|, s|S|+1, . . . , s|S|+|E|}, similar to those in [63]. Now, α′p

contains uniform prior among present specifications and review topics, and zero for absent specifications. If

the drawn topic sp,i belongs to specifications, it works the same as DuanLDA does. On the other hand, if sp,i

belongs to review topics (E), the word wp,i is drawn from φrsp,i , which is drawn from Dirichlet distribution

with a symmetric prior βr.
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Prior Regularization Each specification topic s has its estimated topic size Ns. If the topic size Ns is

relatively too small or too big compared to amount of prior, |V |β, the topic s will rely too much or too little

on the prior β′s. If a topic relies too much on prior, then the topic will just follow the word distribution of

β′s, and if a topic relies too little on prior, it is likely to bear other themes that are unrelated to prior so

that the topic is corrupted. Therefore, we need to regularize the prior size according to topic sizes, which is

done similarly as in [95, 63]. We initialize prior size coefficient β with a big number, and we introduce prior

size controllers {η1, . . . , η|S|}, each of which repeatedly decays by decay factor ζ if the topic size is too little.

Please note that we do not explicitly insert regularization variables to the Gibbs sampling formulas for

SpecLDA for simplicity.

Product-specific Topics We add a product-specific topic ψp for each product p in order to capture how

p is different from other products in reviews. In other words, if a word is closer to a product-specific topic

than to any other topics, it is likely to be assigned with the product-specific topic. When a review author

writes a word wp,i for a product p, the author first chooses between product-specific topic and specification

topics according to λp, which is drawn from Beta distribution with a symmetric prior γ. If the product-

specific topic is chosen (xp,i = 0), wp,i is drawn from ψp, which is drawn from Dirichlet distribution with a

symmetric δ.

SpecLDA

Feature-value pairs with the same feature share the feature information, but DuanLDA models them indi-

vidually. We suggest to form a hierarchy among specifications, where we separate feature topics and value

topics and share the feature topics for feature-value pairs with the same feature. By forming such hierarchy,

we can expect SpecLDA to have more reliable topic estimation since it shares the feature topics and con-

nects feature-value pairs who belong to the same feature. In addition, we can capture a user’s preference on

choosing feature-related or value-related words to indicate a feature-value pair. Another deficiency in Duan

et al.’s model is that it imports priors only from feature words, not from value words. However, we believe

that value word priors are also important, so we employ them as well as feature word priors. Value word

priors are generated in the same way as feature word priors are.

The graphical representation of SpecLDA is depicted in Figure 5.3. For each feature f of all possible

features F , there are possible values Uf . To separate a feature from feature values, a feature variable f is

separated from the value variable uf , which is a possible value for f . Also, the feature value topics ω is

introduced to separate them from feature topics φ. The generative story is as following. Choosing a word

for product-specific is the same as in SpecLDA–. If a product feature is chosen by xp,i, the author chooses
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Figure 5.3: SpecLDA

a feature fp,i from the possible feature set {f1, . . . , f|F |, f|F |+1, . . . , f|F |+|E|}, which is a set of feature and

review topics, according to θp, which is drawn from Dirichlet distribution with αα′p. If fp,i belongs to review

features, wp,i is drawn from multinomial distribution φrfp,i , which is drawn from Dirichlet distribution with

a symmetric prior βr. If the chosen feature fp,i belongs to specifications features, the author again chooses

to write a feature or a value word using switch yp,i according to πfp,i , which is drawn from beta distribution

with a symmetric prior γy. If the author chooses to write a feature word, wp,i is chosen according to φfp,i ,

which is drawn from Dirichlet distribution with ββ′fp,i . Otherwise, the author further chooses value ufp,i for

fp,i according to ξp,fp,i , which is drawn from Dirichlet distribution with ττ p,fp,i . With the chosen feature

value ufp,i, the author chooses a word according to ωfp,i,uf
p,i
, which is drawn from Dirichlet distribution with

ρρ′
fp,i,u

f
p,i

. This process is repeated for all review words of all products.

The document language model of SpecLDA is thus:
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plda(w|p, λ̂, π̂, θ̂, ξ̂, φ̂, φ̂
r
, ω̂, ψ̂)

= p(x = 0|λ̂p)p(w|ψ̂p) + p(x = 1|λ̂p)
[ ∑
f∈E

p(w|φ̂
r

f )p(f |θ̂p) +
∑
f∈F p

p(f |θ̂p)p(w|f, π̂, φ̂, ξ̂, ω̂)
] (5.6)

where

p(w|f, π̂, φ̂,ξ̂, ω̂) = p(y = 0|π̂f )p(w|φ̂f ) + p(y = 1|π̂f )
∑
u∈Uf

p(u|ξ̂f )p(w|ω̂f,u) (5.7)

and the Gibbs sampling formula for learning when product-specific topic is used (x = 0) is

p(xp,i = 0|wp,i,W \p,i,X\p,i, γ, δ) ∝ p(xp,i = 0|X\p,i, γ)p(wp,i|X\p,i,W \p,i, δ)

∝
N
\p,i
x=0|p + γ

Np − 1 + 2γ

N
\p,i
wp,i|x=0 + δ

N
\p,i
x=0 + |V |δ

(5.8)

To learn when we choose a review topic or a feature topic f , the formula is defined as

p(xp,i = 1,fp,i = z, yp,i = 0|wp,i,W \p,i,X\p,i,F \p,i,E\p,i,Y \p,i,Ω)

∝ p(xp,i = 1|X\p,i,Ω)

p(fp,i = z|F \p,i,E\p,i,Ω)

p(yp,i = 0|z,Y \p,i,F \p,i,E\p,i,Ω)

p(wp,i|z,W \p,iF \p,i,E\p,i,Y \p,i,Ω)

∝


N

\p,i
x=1|p+γ

Np−1+2γ ×
N

\p,i
z|p +|F |αα′

p,z

N
\p,i
x=1|p+Kα

×
N

\p,i
y=0|z+γ

y

N
\p,i
z +2γy

×
N

\p,i
wp,i|z,y=0

+|V |ββ′
z,wp,i

N
\p,i
z,y=0+|V |β

if z ∈ F

N
\p,i
x=1|p+γ

Np−1+2γ ×
N

\p,i
z|p +α

N
\p,i
x=1|p+Kα

× 1×
N

\p,i
wp,i|z,y=0

+βr

N
\p,i
z,y=0+|V |βr

if z ∈ E

(5.9)

where Ω is all priors and K is the number of all topics (|S|+ |E|). The probability that a feature and a

feature value are chosen (fp,i = z, up,i = j) is defined as
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p(xp,i = 1, fp,i = z, y = 1, up,i = j|wp,i,W \p,i,X\p,i,F \p,i,Y \p,i,U\p,i,Ω)

∝ p(xp,i = 1|X\p,i,Ω)

p(fp,i = z|X\p,iF \p,i,E\p,i,Ω)

p(yp,i = 1|z,Y \p,i,F \p,i,E\p,i,Ω)

p(up,i = j|z,Y \p,i,F \p,i,U\p,i,Ω)p(wp,i|z, j,W \p,i,U\p,i,Ω)

∝


N

\p,i
x=1|p+γ

Np−1+2γ ×
N

\p,i
z|p +|F |αα′

p,z

N
\p,i
x=1|p+Kα

×
N

\p,i
y=1|z+γ

y

N
\p,i
z +2γy

×
N

\p,i
j|p +|Uf |ττ ′

p,z,j

N
\p,i
z,y=1|p+|U

f |τ
×

N
\p,i
wp,i|j

+V ρρ′z,j,wp,i

N
\p,i
j +V ρ

if z ∈ F

0 if z ∈ E

(5.10)

where |Uf | is the number of all possible feature values for the feature f . Regularization is applied to

priors for both feature words and feature value words.

Feature Importance The importance of a feature may be useful for a novice customer who wants to know

which features are considered important according to reviews. We assume feature importance is determined

by how often the features are mentioned in reviews. In SpecLDA, the assignments of feature topics to

words can be counted and used as feature popularity. A feature popularity of a feature f is defined as

popularity(f) ∝ Nf

Nx=1
where Nf is the number of words assigned with f , and Nx=1 means the number of

words assigned with any features.

5.5 Experiments

In this section, we describe how we perform experiments in detail. In particular, we describe how we collect

the data set including human judgments, how we set parameters, and how we retrieve opinions with the

proposed topic model. Then, we analyze the experiment results qualitatively and quantitatively.

5.5.1 Data Set

It is required for our task to obtain reviews and specifications for products, and these kinds of data are

available in several web sites such as Amazon.com, BestBuy.com, and CNET.com. Among them, we chose

CNET.com because they have a reasonable amount of user reviews and relatively well-organized specifica-

tions. We crawled the reviews and specifications that were available on February 22, 2012 in digital camera

category. We chose the digital camera category since a digital camera is a high-technology product with a
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lot of features, but our models can also be applied to a product category without many features as well.

To pre-process the review text, we performed sentence segmentation, word tokenization, and lemmatization

using Stanford CoreNLP [66] version 1.3.5. We lowered word tokens and removed punctuation. Then, we

removed stopwords provided by Mallet [67], and we omitted word tokens that appear in less than five reviews

or more than 30% of the reviews since they are barely informative. We also pre-processed specifications data.

We removed feature values that appear in less than five products. Then, we split each feature and feature

value text into word tokens, and we lowered the word tokens.

The resulting data contain 1,153 products that have specifications and at least one review. The total

number of reviews is 11,870, with the total number of sentences being 88,527, where each sentence has

7.74 word tokens on average. The reviews in the same product are concatenated to form a single product

document, yielding 1,153 documents with average length being 594.15. In the specifications data, we have

2,320 distinct feature-value pairs S in total, including 124 distinct features F .

Table 5.1: Parameter setting for topic models.

Parameter DuanLDA SpecLDA– SpecLDA
λ 0.3 - -
α 50

|S|
50

|S|+|E|
50

|F |+|E|
β 0.1 10.0 10.0
βr - 0.01 0.01
γ - 0.5 0.5
δ - 0.0001 0.0001
ζ - 0.9 0.9
εpp - 0.5 0.5
εts - 50 50
τ - - 0.01
ρ - - 10.0
γy - - 50

Parameter Setting For all the suggested LDA models, we use five Markov chains with 2,000 Gibbs

sampling iterations each, where each chain is randomly initialized. Parameter values are empirically set and

shown in Table 5.1, where “-” means not available for the model, and these values are used for all experiments

unless specified otherwise.

As shown, SpecLDA– and SpecLDA use more parameters than DuanLDA. However, many of the addi-

tional parameters can be easily set. For example, we can just give a small number to γ, which means very

weak supervision on the Bernoulli distribution. The decay factor ζ can be set to a value close to 1.0. We

can assign high enough values for initial β and ρ. For DuanLDA, we set β that gives the highest evalu-

ation scores while the topics hold the original specifications well; we measure topic corruption rate based
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on KL-Divergence between the original specification words and the estimated topics and try to maintain

very similar level of corruption rate for the suggested methods. βr and δ should be set depending on the

sizes of review topics and product-specific topics, respectively, and τ can be set depending on the size of

feature-value topics. εpp and εts can be set depending on how we want to control prior knowledge; if we want

the topics more like prior words, we can set εpp close to 1.0 and εts very high. γy is a smoothing parameter

on choosing feature or value topics, so greater γy results in more even preference.

5.5.2 Mining Opinions by Sentence Retrieval

Once we learn the topic models, we use the estimated document language models, plda(w|p), to mine opinion

sentences for a specification s. To retrieve text using a document language model, we exploit query likelihood

retrieval model [6], one of the standard ad-hoc retrieval method. Fortunately, in our problem setting, we can

take advantage of specifications to filter out some of unrelated sentences; if a sentence tp is from a product

p’s reviews, and s is not in p’s specifications Sp, we can ignore tp. The relevance score of tp for s is thus

defined as

score(s, tp) =

 0 , if s /∈ Sp∏
w∈s

[
(1− χ)plda(w|tp) + χp(w|W )

]
, otherwise

(5.11)

where p(w|W ) is a background language model that is estimated by count(w)
|W | , where count(w) is the count

of w in corpus W . χ is a parameter to give a non-zero value to plda(w|tp), which is a standard smoothing

technique.

Our goal is to mine opinion “sentences”, while the suggested topic models estimate “document” language

models. We can extend LDA to model each sentence, but it will require too many variables since the

number of sentences is usually way greater than the number of documents. Thus, we convert estimations

from document-level to sentence-level. Language model p(w|tp) for a sentence t in a product document p is

thus defined as:

plda(w|tp) =

K∑
z=1

N̂w|z + |V |ββ′z,w
N̂z + |V |β

N̂z|t + |t|
|p|Kαα

′
p,z

N̂t + |t|
|p|Kα

(5.12)

where the size of topic-document prior Kα is re-sized by the proportion of length of t to that of p since

topic-document prior depends on the size of document. The same conversion technique is used for other

priors that depends on document length in this work.

Query Expansion by Topic Models In addition to mining opinions based on original specification

words, we also try mining opinions with query expansion. One of the advantages of using topic models
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when topics represent queries is that the estimated topics can be used to expand the original queries. To

use a topic as a specification query, we employ KL-divergence model, which is a generalization of the query

likelihood model, and its derivation is well explained in [113]. Following the derivation, instead of c(w, s) in

formula (5.11), we put p′(w|s), which is a query language model. The query language model we use is the

interpolation of the original query model and the estimated topic model, and it is defined as

p′(w|s) = (1− µ)p(w|s) + µp(w|φ̂s) (5.13)

where p(w|s) = c(w,s)
|s| , and p(w|φ̂s) is the estimated topic language model for the specification s.

5.5.3 Qualitative Analysis

Table 5.2: Top 20 words of a topic for a specification (“Display – Type”, “2.5 in. LCD Display”).

DuanLDA SpecLDA– SpecLDA–_V SpecLDA
display digital lcd lcd
type lcd display 2.5

phtography 2.5 2.5 display
font display screen screen

florescent huge type large
informative technology large inch
channel expensive inch monitor
triple type monitor articulate

resultant large phtography 1.8
lcd outstanding font 230,000

printout icon crack panel
a10 silver symbol bright

colorful follow 1.8 icon
information rubber icon rotatable

info phtography bright sunlight
horizontal salesman brightness brightness

picture/video font articulate viewfinder
infinite info salesman tilt
2aa blessing range viewer
3.0 symbol informative flippable

Specification Topics The top words in the specification topic (“Display – Type”, “2.5 in. LCD Display”)

for each model are listed in Table 5.2. SpecLDA–_V is a value word prior-added version of SpecLDA–.

The word distribution is extracted from φ̂ of DuanLDA, SpecLDA–, and SpecLDA–_V, and π0φ̂+ π1ω̂ of

SpecLDA. As shown in the table, words in DuanLDA do not show reasonable relevance to the feature value

“2.5 in. LCD Display” since it does not utilize value word priors and the prior amount is fixed. On the other

hand, SpecLDA– attracted a few feature value-related words with dynamic prior amount. SpecLDA–_V,

which uses value prior words, drew more value-related words, but it still keeps a few unrelated words. Most
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of the twenty words SpecLDA attracted seem to be related to the feature value because the feature topic

and value topics form a cluster, resulting in better topic estimation.

Table 5.3: Examples of product-specific topics.

Logitech Canon Canon
ClickSmart PowerShot PowerShot

310 SX10 IS S2 IS
webcam lens zoom
cam zoom video
video sx10 s2
image stamp movie
digital 20x cap

computer video canon
flash cap mode
web slr shot
cheap date/time sony
figure superzoom 12x

Product-specific Topics In order to inform customers what is special about a product, we capture a

product-specific topic ψ for each product, and the examples of ψ̂ are listed in Table 5.3. In the table, there

are several words related to webcams for the product Logitech ClickSmart 310, which is actually a webcam

that is a rare product category in the data set. Canon PowerShot SX10 IS features 20X optical zoom, which

is indeed rare (in only five products) and relatively very high performance in the data set, and ψ̂ captures

related words such as “lens”, “zoom”, “20x”, and “superzoom” quite well. From the top words of Canon

PowerShot S2 IS, we can see that zoom and video are special. The following sentences from CNET’s editor’s

review, which is not included in our data set, support why those words are highlighted for the product.

The S2’s VGA movie mode, which now supports stereo audio, is quite good, with a top resolution

of 640x480 at 30fps. Unlike many cameras with similar movie-capture modes, the Canon lets you

use the zoom, which operates very quietly, and the IS while capturing video.

As shown in the examples, the product-specific topics capture special characteristics of products reasonably

well. However, since each product-specific topic is estimated from reviews of a single product, not enough

words are assigned with the topic if there are not many review texts for the product.

Feature Importance By our assumption that more important features are mentioned more frequently in

reviews, we compute feature popularity scores and show the ten most popular features out of 128 possible

features in Table 5.4. Surprisingly, “Additional Features – Additional Features” is ranked first in the list.

The feature has the greatest number of distinct values (170) so that it is present in almost all products,
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Table 5.4: Ten most popular features.

Most Popular Features
Additional Features – Additional Features
Exposure & White Balance – Shooting Program
Miscellaneous – Included Accessories
Exposure & White Balance – Light Sensitivity
Camera Flash & Flash Modes
Battery – Supported Battery
Memory / Storage – Supported Memory Cards
Lens System – Type
Lens System – Zoom Adjustment
Software

and the word “feature” is one of the most frequent words in the data set. Therefore, many words correlated

to the word “feature” are assigned with this feature. Also, the feature “Lens System – Zoom Adjustment”

actually contains words more related to zoom capability than zoom adjustment, due to the fact that zoom

adjustment is barely mentioned in reviews so that words related to zoom capability are attracted to the

topic. This is limitation of our model, and one should consider filtering out those very unpopular features.

Other listed features are regarded reasonably important when people purchase a digital camera.

5.5.4 Quantitative Analysis

Human-labeled Data

In order to quantitatively evaluate how well the suggested methods mine opinion sentences for feature values,

we need to make a gold standard data set labeled by humans. However, labeling 88,527 sentences by each

of multiple annotators is too expensive. A domain expert was asked to choose the twelve most important

features by looking at specifications and word counts in the whole corpus. Then, the words in the possible

feature-value pairs were used to retrieve candidate sentences (13,671) by the models in Section 5.4. Each of

the candidate sentences was labeled whether the sentence is relevant to a specification by three annotators

at a crowdsourcing service CrowdFlower4. The agreement rate was 0.926, and Cohen’s kappa coefficient was

0.678, where values between 0.61-0.80 are regarded as substantial agreement among annotators [50]. After

omitting non-agreed sentences and queries with less than 20 true relevant sentences, we have 44 queries with

1,251 relevance data on average for each query.
4http://www.crowdflower.com/
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Evaluation Metric

We use Mean Average Precision (MAP) as an evaluation metric, which is a mean of average precision for

each query. The metric basically measures general retrieval performance for multiple queries, and if we have

more relevant documents in high ranks, then the score becomes higher. Specifically, we use MAP@k that

computes mean of average precision at the top k retrieved sentences for each query, and we set k as 5, 10,

and 20 to see how well the models work in different user satisfaction levels.

5.5.5 Result Analysis

We evaluate the sentences retrieved for specification queries. For all the models, we use the original queries,

which are concatenated strings of feature words and value words. For SpecLDA– and SpecLDA, we set

the number of review topics |E| = 5. Table 5.5 shows evaluation results for the baseline model DuanLDA

and our new models SpecLDA– and SpecLDA. † is used to mark models if the improvement is statistically

(paired t-test with p=0.05) significant in all measures from the DuanLDA. SpecLDA–, which uses prior

regularization, significantly improves DuanLDA on all measures. SpecLDA outperforms the baseline model

significantly on all measures, and it also outperforms SpecLDA–, especially on MAP@20.

Table 5.5: MAP evaluation results for finding sentences relevant to a specification. Amount of improvement
from DuanLDA is in parenthesis.

MAP@5 MAP@10 MAP@20
DuanLDA 0.927 0.851 0.780
SpecLDA–† 0.970 (4.6%) 0.894 (5.1%) 0.812 (4.1%)
SpecLDA† 0.986 (6.4%) 0.917 (7.8%) 0.849 (8.8%)

Results in Table 5.6 show evaluation results when the query language models are expanded by topics.

DuanLDA_V is a version of DuanLDA that adds value word priors. Models in the upper part use only

feature word priors, and those in the lower part use value word priors as well. Comparing results in Ta-

ble 5.5 and those in Table 5.6, we can see that query expansion by topic models indeed helps us mine

opinion sentences especially with SpecLDA. When value word priors are not used, SpecLDA– significantly

outperforms DuanLDA. SpecLDA–_V significantly outperforms DuanLDA_V, and SpecLDA even improves

SpecLDA–_V, which again means SpecLDA’s hierarchy structure is effective.

5.6 Conclusion and Future Work

In this work, we studied the problem of automatically augmenting product specifications by jointly modeling

product reviews and specifications. In specific, we defined the novel problem of relevant sentence retrieval
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Table 5.6: Evaluation results by query expansion. Amount of improvement from DuanLDA (upper part)
and DuanLDA_V (lower part) is in parenthesis. † is used to indicate statistical significance on all measures
against DuanLDA (upper part) and DuanLDA_V (lower part).

µ MAP@5 MAP@10 MAP@20
DuanLDA 0 0.927 0.851 0.780
SpecLDA–† 0.2 0.978 (6%) 0.893 (5%) 0.822 (5%)
DuanLDA_V 0.7 0.964 0.891 0.828
SpecLDA–_V† 1.0 0.986 (2%) 0.952 (7%) 0.880 (6%)
SpecLDA† 0.7 0.986 (2%) 0.969 (9%) 0.905 (9%)

for feature values and suggested a novel approach that is shown to effectively model reviews and specifi-

cations. We also demonstrated the inference of feature importance and product-specific words, which may

be important for consumers. The potential impact of the augmented specifications is significant since both

consumers and manufacturers may benefit from them.

There are limitations in this work. Although there exists a hierarchy between product models and between

features, we did not consider them but only exploited the hierarchical structure between features and feature

values. Exploiting more hierarchical structures will help us model topics more robustly. For example, there

may be several products which belong to the same manufacturer, and leveraging such hierarchy can help us

avoid bias in data since we can aggregate data for manufacturers as we need. As discussed in the previous

sections, there exist other limitations. For example, the product specific topics are not robust when there

are not enough review texts for products. Also, as we employ bag-of-words representation, the prior words in

specifications may attract words that are not really about the features or feature values in the specifications.

While we retrieve all sentences relevant to feature values, one can also suggest retrieving sentences

according to sentiment. Retrieving positive, negative, and neutral sentences separately for feature values

will help consumers understand the features in a more organized way. Our model also does not consider the

time of product reviews being written. A customer feedback on a feature value may be different depending

on the time the customer uses it, so disregarding time may result in inconsistency of sentiment on the feature

value. If a model considers time, then we can also see how people’s opinions change over time and can predict

which feature value will be preferred, which may be highly informative for manufacturers. We leave all these

interesting problems as future work.
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Chapter 6

Retrieval of Relevant Opinion Sentences
for New Products1

6.1 Introduction

In the previous chapter, we discussed how we can augment product specifications so that users can obtain

useful information that are needed to make purchase decisions. Once a user understands details of a product,

the user may look for other users’ opinions on the product, in order to gain indirect experience. Luckily,

online retailers often provide a space on their web sites where users can leave their opinions on each product.

However, the majority of products does not have user reviews since they are new or unpopular. Therefore,

in this chapter, we study how to retrieve relevant opinions for such products from reviews of other products.

The role of product reviews has been more and more important. Reevoo, a social commerce solutions

provider, surveyed 1,000 consumers on shopping habits and found that 88 percent of them sometimes or

always consult customer reviews before purchase.2 According to the survey, 60 percent of them said that they

were more likely to purchase from a site that has customer reviews. Also, they considered customer reviews

more influential (48%) than advertising (24%) or recommendations from sales assistants (22%). With the

development of Internet and E-commerce, people’s shopping habits have changed, and we need to take a

closer look at it in order to provide the best shopping environment to consumers.

Even though product reviews are considered important to consumers, the majority of the products has

only a few or no reviews. Products that are not released yet or newly released generally do not have enough

reviews. Also, unpopular products in the market lack reviews because they are not sold and exposed to

consumers enough. How can we help consumers who are interested in buying products with no reviews? In

this work, we propose novel methods to automatically retrieve review text for such products based on reviews

of other products. Our key insight is that opinions on similar products may be applicable to the product

that lacks reviews. For example, if products X and Y have the same CPU clock rate, then people’s opinion

on CPU clock rate for product X may be applicable to that for product Y as well. The similarity between

products can be computed based on product specifications which are often available, where an example of
1Part of this work has been published in [77].
2https://www.reevoo.com/news/half-of-consumers-find-social-content-useful-when-shopping-online/
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product specifications is shown in Figure 6.1.

Feature Value

Figure 6.1: A part of product specifications at CNET.com.

Here is an example of review text we manually retrieved for a certain product’s specification “Resolution:

12.1 megapixels” from real reviews of products that have the same resolution.

12.1 MP captures very minute details even at highest zoom. This 12.1 megapixel megazoom

offers an awesome value as the pictures it produces are on par with some cheap DSLRs. I will

not longer bring my big DSR camera on my vacations. 12MP is too much, I use it with 8MP

- that’s more than plenty. What I like most about the W200 is my ability to get crystal clear

4000x3000 12.1 meg photos without having to spend a couple of thousand dollars on an digital

SLR camera body and then even more cash on the accessories (e.g. lens).

Even though these sentences are not necessarily coherent opinions, they are clearly very useful for users

to understand the product features and get access to relevant discussions of other users. Since a user would

hardly have a clue about opinions on a new product, such a retrieved review text can be expected to be

useful. As a minimum, it can be very useful to help users prioritizing what to read in the existing reviews of

other products. Not only from a consumer’s perspective, but also from a manufacturer’s perspective, such

techniques would be beneficial to collect opinions on its new or unpopular products. From the retrieved

opinions, the manufacturers would be able to predict what consumers would think even before they release

their product, and they can react to the predicted feedback in advance.

This work makes the following contributions:
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1. We introduce and study a novel problem of relevant opinion retrieval for products that do not have

reviews in order to provide useful information to consumers and manufacturers. To the best of our

knowledge, no previous work has addressed this problem.

2. To solve the problem, we propose new probabilistic retrieval methods, which are Translation model,

Specifications Generation model, and Review and Specifications Generation model, as well as a stan-

dard summarization method MEAD and its modified version MEAD-SIM, and a standard ad-hoc

retrieval method. Our suggested probabilistic methods are also able to retrieve per-feature opinions

for a query product.

3. We create a new data set for evaluating the new problem and conduct experiments to show that our

translation model indeed retrieves useful opinions and outperforms other baseline models. We also

provide an automatic method to evaluate retrieved sentences for new products.

In order to evaluate the automatically retrieved opinions for a new or unpopular product, we pretend

that the query product does not have reviews and predict its review text based on similar products. Then,

we compare the predicted review text with the query product’s actual reviews to evaluate the performance

of suggested methods. Experiment results show that our translation model effectively retrieves opinions for

a product that does not have reviews and it significantly outperforms baseline methods.

6.2 Related Works

Reviews are one of the most popular sources in opinion analysis. Opinion retrieval and summarization

techniques attracted a lot of attentions because of its usefulness in Web 2.0 environment. There are several

surveys which summarize the existing opinion mining work [45, 76, 60]. Compared to text data in other

general retrieval problems, opinionated articles such as product reviews have some different characteristics.

In opinion analysis, analyzing polarities of input opinions are crucial. Also, majority of the opinion retrieval

works are based on product feature (aspect) analysis. They first find sub-topics (features) of a target and

show positive and negative opinions for each aspect. By further segmenting the input texts into the smaller

units, they showed more details in a structured way [36, 61, 64, 69, 85, 97, 46]. Meanwhile, product reviews

have been also employed to predict ratings [75, 29] or sales [20] of a product. However, no existing work

addressed the problem of retrieving opinion sentences for new products yet.

In this work, we also utilize unique characteristics of product data: specifications (structured data) as well

as reviews (unstructured data). Although product specifications have been provided in many e-commerce

web sites, there are only a limited number of studies that utilized specifications for product review analysis.
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Zhou and Chaovalit [117] performed sentiment classification on reviews using domain ontology database,

which may be regarded as product specifications. Bhattattacharya et al. [7] employed IMDb’s structured

data to categorize documents, and Yu et al. [112] built an aspect hierarchy using product specifications

and reviews. Wang et al. [103] and Peñalver-Martínez et al. [82] also employed product specifications to

summarize product features. Product reviews and specifications were jointly modeled using topic models by

Duan et al. [22] to improve product search and by Park et al. [79] to generate augmented specifications with

useful information. Park et al. [79] retrieved review sentences for each (feature, value) pair, but they did not

study their model’s performance on products with no reviews. In addition, their model does not consider

similarity among products or specifications, which is an important factor for the problem. Likewise, there

are a few studies that employed product specifications, but their goals are different from ours.

Our work is related to text summarization, which considers centrality of text. Automatic text summa-

rization techniques have been studied for a long time due to the need of handling large amount of electronic

text data [74, 48, 35]. Automatic summarization techniques can be categorized into two types, extractive

summarization and abstractive summarization. Extractive summarization makes a summary by selecting

representative text segments, usually sentences, from the original documents. Abstractive summarization

does not directly reuse the existing sentences but generates sentences based on text analysis. Our work

is similar to extractive summarization in that we select sentences from original documents but different in

that we retrieve sentences for an entity that does not have any text. Among the previous work, MEAD

[86] is one of the most popular public extractive summarization toolkits, which supports multi-document

summarization in general domain. The goal of MEAD is different from ours in that we want a summary for

a specific product, and also, MEAD does not utilize external structured data (specifications).

Cold start problem in recommendation systems [90], where no one has rated new items yet, is also related

to our problem. However, unlike rating connections between items and users, each user review carries its

unique and complex meaning, which makes the problem more challenging. Moreover, our goal is to provide

useful relevant opinions about a product, not recommending a product. XML retrieval [49] that utilizes

structured information of documents is also related to our work, in that reviews and specifications can

be represented as a special XML. However, unlike general XML retrieval, in this work, we propose more

specialized methods for product reviews using product category and specifications. In addition, because

we require the retrieved sentences to be central in reviews, we consider both centrality and relevance while

general retrieval methods focus on relevance only. As far as we know, none of the existing work tried to

solve the same problem as ours.
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6.3 Problem Definition

The product data consist of N products {P1, ..., PN}. Each product Pi consists of its set of reviews Ri =

{r1, ..., rm} and its set of specifications Si = {si,1, ..., si,F }, where a specification si,k is a feature-value pair,

(fk, vi,k), and F is the number of features. Given a query product Pz, for which Rz is not available, our goal

is to retrieve a sequence of relevant opinion sentences T in K words for Pz. Figure 6.2 illustrates our novel

problem.

Figure 6.2: Relevant opinion retrieval for query products. Note that the query products do not have any
user reviews.

Note that our problem setup is a mixture of retrieval and summarization. On the one hand, it can

be regarded as a ranking problem, similar to retrieval; on the other hand, it can also be regarded as a

summarization problem since we restrict the total number of words in the retrieved opinions .

This is a new problem that has not been addressed in any previous work. The problem is challenging

for several reasons. Retrieved sentences for Pz should conform to its specifications Sz while we do not know

which sentences are about which specific feature-value pair. In addition, the retrieved sentences should be

central across relevant reviews so that they reflect central opinions. Despite the challenges, we try to show

that achieving the goal is feasible. In the next sections, we propose multiple methods to solve the problem.

6.4 Overall Approach

When reviews are not available for a product, a consumer has no way to obtain opinions on it. In order

to help consumers in such situation, we believe that product specifications are the most valuable source to

find similar products. We thus leverage product specifications to find similar products and choose relevant

sentences from their user reviews. In this approach, we assume that if products have similar specifications,

the reviews are similar as well. For example, here is an actual review sentence from the review of a digital
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camera that takes a picture at high resolution: “the best camera I have ever owned, takes unbelievable

crisp sharp photos with it’s 16.1 Megapixels.” It is admitted that the consumer is very impressed with the

feature-value pair, (“Resolution”, “16.1 Megapixels”), and we can expect that other digital cameras with the

same feature-value pair could impress their consumers as well. The assumption may not be valid in some

cases, i.e., the same specifications may yield very different user reviews. We thus try to retrieve “central”

opinions from similar products so that the retrieved sentences can become clearly useful.

6.5 Similarity between Products

We assume that similar products have similar feature-value pairs (specifications). In general, there are many

ways to define a similarity function. We are interested in finding how well a basic similarity function will

work although our framework can obviously accommodate any other similarity functions. Therefore, we

simply define the similarity function between products as

SIMp(Pi, Pj) =

∑F
k=1 wkSIMf (si,k, sj,k)∑F

k=1 wk
(6.1)

where wk is a weight for the feature fk, and the weights {w1, ..., wF } are assumed identical (wk = 1) in this

study, so the similarity function becomes

SIMp(Pi, Pj) =

∑F
k=1 SIMf (si,k, sj,k)

F
(6.2)

where SIMf (si,k, sj,k) is a cosine similarity for feature fk between Pi and Pj and is defined as

SIMf (si,k, sj,k) =
vi,k · vj,k√∑

v∈vi,k
v2
√∑

v∈vj,k
v2

(6.3)

where vi,k and vj,k are phrase vectors in values vi,k and vj,k, respectively. Both SIMp(Pi, Pj) and SIMf (si,k, sj,k)

range from 0 to 1.

In this work, we define the phrases as comma-delimited feature values. SIMf (si,k, sj,k) is similar to

cosine similarity function, which is used often for measuring document similarity in Information Retrieval

(IR), but the difference is that we use a phrase as a basic unit while a word unit is usually adopted in IR. We

use a phrase as a basic unit because majority of the words may overlap in two very different feature values.

For example, the specification phrases “Memory Stick Duo”, “Memory Stick PRO-HG Duo”, “Memory Stick

PRO Duo”, and “Memory Stick PRO Duo Mark2” have high word cosine similarities among themselves since
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they at least have 3 common words while the performances of the specifications are very different. Thus,

our similarity function with phrase unit counts a match only if the phrases are the same.

6.6 Methods

In this section, we suggest multiple methods for relevant opinion sentences retrieval. We first suggest a

standard summarization tool, MEAD [86]. In order to make up for the MEAD’s weak points, we also

suggest modified version of MEAD. Then, we propose our probabilistic models to solve the problem.

6.6.1 MEAD: Retrieval by Centroid

For our problem, text retrieval based only on query-relevance is not desirable. The retrieved sentences need

to be central in other reviews in order to obtain central opinions about specifications. For example, if there

are more opinions that contains a word “big” than a word “small” for a certain feature-value pair, it is

desired to assign higher score to the sentences having the word “big”. However, since the query contains

only feature-value pair words, classic information retrieval approaches are not able to prefer such sentences.

Therefore, we suggest using a method that considers centrality among sentences.

MEAD [86] is a popular centroid-based summarization tool for multiple documents, and it was shown

to effectively generate summaries from a large corpus. It provides an auto-generated summary for multiple

documents. For a corpus R, a score of ith sentence t in a document is computed by sum of centroid and

position scores of words, which is defined as

score(t;R) = wcCt + woOt (6.4)

where Ct is a sum of centroid scores of words in t, which is defined as Ct =
∑
w Cw,t, and Ot is a position score,

which gives higher score to the sentences appearing earlier in a document and defined as Ot = (n−i+1)
n ·Cmax

where n is the number of sentences in the document and Cmax is the maximum centroid score in the

document. Centroid score of a word, Cw,t, is a TFIDF value in the corpus R, and wc and wo are weights

for Ct and Ot, respectively. Please refer to [86] for more details.

In order to retrieve sentences that are likely to be relevant to the query product Pz, which has no reviews,

we employ specifications to find products similar to Pz and use the similarity as a clue for finding relevant

sentences. Since the score formula (6.4) utilizes only centrality and does not consider relevance to the query

product, we augment it with product similarity to Pz so that we can find sentences that are query-relevant

and central at the same time. In addition, MEAD employs position score that is reasonable for news articles,
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but it may not be appropriate for reviews; unlike news articles, it is hard to say that the sentences appearing

earlier in the reviews are more important than those appearing later. Thus, we remove position score term

from formula (6.4), and we augment it with similarity to query. The new score function is defined as

score(t, Sy;R,Sz) = Ct · SIMp(Sy, Sz) (6.5)

where t is a sentence in a review for product Py and SIMp (Sy, Sz) is a product similarity between Py and

the query product Pz, which is defined in equation (6.2).

6.6.2 Probabilistic Retrieval

To solve the problem in a more principled way, we introduce our probabilistic methods. Query likelihood

retrieval model [6], which assumes that a document generates a query, has been shown to work well for

ad-hoc information retrieval. Similarly, we attempt to generate the query specifications Sz from a candidate

sentence t via several generative scenarios.

Specifications Generation Model

The generative story is described as follows. Each sentence t from reviews of its product Py first generates its

specifications Sy. The specifications Sy then generate the query specifications Sz. Following the dependencies

among variables, the scoring function is defined as

score(t, Sy;R,Sz) ∝ p(t, Sy|Sz)

=
p(Sz|Sy)p(Sy|t)p(t)

p(Sz)

(6.6)

We can interpret p(t, Sy|Sz) as the probability that t and Sy satisfy information needs of a user given

Sz. p(Sz|Sy) measures proximity of Sy to Sz. p(Sy|t) measures proximity of t to Sy, and p(t) is a general

preference on t. Since we assume no preference on sentences, we ignore p(t) for ranking. p(Sz) is also ignored

because it does not affect the ranking of sentences for Sz. Thus, the formula assigns high score to a sentence

if its specifications Sy match Sz well and the sentence t matches its specifications Sy well. p(t, Sy|Sz) is then

defined as

p(t, Sy|Sz) ∝ p(Sz|Sy)p(Sy|t)

=

F∑
k=1

p(sz,k|sy,k)p(sy,k|t)
(6.7)
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where a set of specifications such as Sy is decomposed into feature-value pairs sy,k. We assume that a k’th

feature-value pair of one specification set generates only the k’th feature-value pair of another specification

set, not other feature-value pairs. This is to ensure that sentences not related to a specification sz,k are

scored low even if their word score p(sy,k|t) is high. p(sz,k|sy,k), proximity of sy,k to sz,k, is estimated as

follows.

p(sz,k|sy,k) ∝ SIMf (sz,k, sy,k)∑
s∈Distinct(k) SIMf (s, sy,k)

(6.8)

where Distinct(k) is a set of distinct feature-value pairs for a feature fk. p(sy,k|t) is defined as

p(sy,k|t) =
∏

w∈sy,k

p(w|t) =
∏
w∈U

p(w|t)c(w,sy,k) (6.9)

where U is a vocabulary set in corpus R, and c(w, sy,k) is a count of word w in the feature-value pair sy,k.

p(w|t) follows t’s unigram language model [84], and it means a word w’s likelihood in a sentence t. One of the

standard ways to estimate p(w|t) is using maximum likelihood (ML) estimator, which gives p(w|t) = c(w,t)
|t| ,

where c(w, t) is the count of w in t, and |t| is the number of words in t. Thus, p(sy,k|t), likelihood of a

feature-value pair sy,k in a sentence t, becomes higher if more words in the feature-value pair appear often

in t. To avoid over-fitting and prevent p(sy,k|t) from being zero, we smooth p(w|t) with Jelinek-Mercer

smoothing method [41], which is shown in [114] to work reasonably well. Using Jelinek-Mercer smoothing,

p(w|t) is defined as

p(w|t) = (1− λ)pml(w|t) + λp(w|R) (6.10)

where pml(w|t) and p(w|R) follow a sentence language model and a corpus language model, respectively,

which are estimated with ML estimator. To smooth p(w|t), a reference language model p(w|R) is used

so that we can have general word likelihood that nicely augments pml(w|t). The resulting p(w|t) can be

regarded as weighted average of pml(w|t) and p(w|R).

Review and Specifications Generation Model

Specifications Generation model in section 6.6.2 does not consider centrality among reviews. However, as

explained in section 6.6.1, centrality as well as query-relevance should be considered for the task. Here, we

assume that a candidate sentence t of product Py generates the product’s reviews Ry except itself t. This

generation enables us to measure centrality of t among all other sentences in the reviews for Py. Then, t

and R
\t
y jointly generate its specifications Sy, where R

\t
y is a set of reviews for Py except the sentence t.

90



www.manaraa.com

Intuitively, it makes more sense for Sy to be generated by both t and R\ty than by only t. Sy then generates

the query specifications Sz. Following the dependencies, the score function is defined as

score(t, R\ty , Sy;R,Sz) ∝ p(t, R\ty , Sy|Sz)

=
p(Sz|Sy)p(Sy|t, R\ty )p(R

\t
y |t)p(t)

p(Sz)

∝ p(Sz|Sy)p(Sy|t, R\ty )p(R\ty |t)

(6.11)

where p(t) and p(Sz) are ignored for the same reason as in section 6.6.2. Now, p(R\ty |t), a proximity of t to

the reviews R\ty , is computed to consider centrality of t. Also, p(Sy|t, R\ty ), a proximity of t and R\ty to the

specifications Sy, is computed to promote sentences from reviews that match its specifications well. Thus, a

sentence t is preferred if (1) its specifications Sy is similar to Sz, (2) Sy represents its reviews Ry well, and

(3) R\ty represents t well. p(t, R\ty , Sy|Sz) can be re-written as

p(t, R\ty , Sy|Sz) = p(R\ty |t)
F∑
k=1

p(sz,k|sy,k)
∏

w∈sy,k

p(w|t, R\ty ) (6.12)

where p(w|t, R\ty ) is smoothed to (1− λ)δ(w|t, R\ty ) + λp(w|R), where δ(w|t, R\ty ) is defined as

δ(w|t, Ri) =

 0 if w 6∈ t
c(w,t)+c(w,Ri)
|t|+|Ri| if w ∈ t

(6.13)

We ignore w if w is not in t in order to require the retrieved sentences to contain words in sy,k. The proximity

of t to R\ty , p(R\ty |t), is estimated by TFIDF cosine similarity function SIM(R
\t
y , t), where TFIDF cosine

similarity between documents d and d′ is defined as

SIM(d, d′) =

∑
w∈d,d′ c(w, d) · c(w, d′) · IDF (w)2√∑

w∈d(c(w, d) · IDF (w))2 ·
√∑

w′∈d′(c(w
′, d′) · IDF (w′))2

(6.14)

where IDF of word w is defined as

IDF (w) = log
|R|

1 +DF (w)
(6.15)

where |R| is the number of reviews in the whole corpus, and DF (w) is the number of documents that contain

w.
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Translation Model

In Review and Specifications Generation model, we assumed a sentence t of product Py generates its reviews

Ry, and t and Ry jointly generate their specifications Sy. However, we can also assume that t generates

reviews of an arbitrary product because there may be better reviews that can represent t and generate Sy

well. In other words, there may be a product Px that translates t and generates Pz based on the translation

with a better performance.

The generative story is described as follows. A candidate sentence t of a product Py generates each review

set of all products, which will be used as translations of t. t and each of the generated review sets, Rx, jointly

generate t’s specifications Sy, and Sy generates specifications of Rx, Sx, and the query specifications Sz. We

intend Sy to generate specifications of the translating product Sx so as to penalize the translating product

if its specifications are not similar to Sy. Following the generative story, the score function is defined as

score(t, Sy;R,Sz) ∝ p(t, Sy|Sz)

=
p(Sz|Sy)

∑
Px∈P\z p(Sx|Sy)p(Sy|t, Rx)p(Rx|t)p(t)

p(Sz)

∝ p(Sz|Sy)
∑

Px∈P\z

p(Sx|Sy)p(Sy|t, Rx)p(Rx|t)

(6.16)

where p(Sz) and p(t) are ignored for the same reason as before. As described, the score function contains a

loop over all products (except Pz), instead of using only t’s review set Ry, to get the votes from all translating

products. The features in different specifications are paired together, which decompose p(t, Sy|Sz) as follows.

p(t, Sy|Sz) ∝
F∑
k=1

p(sz,k|sy,k)
∑

Px∈P\z

p(sx,k|sy,k)p(sy,k|t, Rx)p(Rx|t)

=

F∑
k=1

p(sz,k|sy,k)
∑

Px∈P\z

p(sx,k|sy,k)p(Rx|t)
∏

w∈sy,k

p(w|t, Rx)

(6.17)

where proximity between specifications are estimated using cosine similarity function SIMf as in specifi-

cations generation model, and the proximity of t to arbitrary reviews Rx, p(Rx|t), is estimated by TFIDF

cosine similarity function. In order to consider the case Py is the same as Px, we define p(w|t, Rx) as

p(w|t, Rx) =

 (1− λ)δ(w|t, Rx) + λp(w|R) if Px 6= Py

(1− λ)δ(w|t, R\tx ) + λp(w|R) if Px = Py

(6.18)

Meanwhile, looping over all non-query products is probably too expensive in terms of computational

complexity. We thus choose X translating products PX to reduce the complexity. Perhaps, the most
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promising translating products may be those who are similar to the query product Pz. We want the retrieved

sentences to be translated well by the actual reviews of Pz, which means that those reviews of products not

similar to Pz are not considered important. Since we assume that products similar to Pz are likely to have

similar reviews, we exploit the similar products’ reviews to approximate Rz, where we measure similarity

using specifications. Therefore, we loop over only X translating products PX that are most similar to Pz,

where similarity function SIMp is employed to measure similarity between products. Since Px needs to be

similar to Pz, we further assume that Px generates Pz, which yields proximity of Px to Pz, p(Pz|Px), and it

is defined as

p(Pz|Px) =
SIMp(Pz, Px)∑

x′∈PX SIMp(Pz, Px′)
(6.19)

and this product-level similarity is used as a weight of Px in formula (6.17).

6.7 Experimental Setup

6.7.1 Data Set

Since we study a new task that has not been studied before, there is no existing test collection available

to use for evaluation. We thus must solve the challenge of creating a test set. We address this problem by

using products with known reviews as test cases. We pretend that we do not know their reviews and use our

methods to retrieve sentences in K words; we then compare the retrieved text with the actual reviews of a

test product. This allows us to evaluate the task without manual annotation, and it is a reasonable way to

perform evaluation because it would reward a system that can retrieve review sentences that are similar to

the actual review sentences of a product.

We now describe how to build our data set in detail. First, it is required for our problem to obtain reviews

and specifications for products, and these kinds of data are available in several web sites such as Amazon.com,

BestBuy.com, and CNET.com. Among them, we chose CNET.com because they have a reasonable amount

of reviews and relatively well-organized specifications. There are several product categories in CNET.com,

and we chose digital camera and MP3 player categories since they are reasonably popular and therefore the

experiment results can yield significant impact. From CNET.com, we crawled product information for all

products that were available on February 22, 2012 in both categories. For each product, we collected all of

its user reviews and specifications.

We omitted products that do not contain reviews or specifications. (We found that about two thirds of
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Table 6.1: Statistics of the data for digital camera and MP3 player categories.

Digital MP3
Camera Player

Num. of products 1,153 605
Num. of reviews 12,779 14,159
Num. of sentences 137,599 291,858
Num. of word tokens 754,888 1,725,192
Vocabulary size 6,442 6,959
Num. of features 9 8
Num. of distinct feature values 1,038 384

the products indeed didn’t have any user reviews.) To preprocess the review text, we performed sentence

segmentation, word tokenization, and lemmatization using Stanford CoreNLP [66] version 1.3.5. We lowered

word tokens and removed punctuation. Then, we removed word tokens that appear in less than five reviews

and stopwords.

We also preprocessed specifications data in the following way. In general, specifications contain dozens

or hundreds of distinct features, and many of them are not mentioned in the reviews. Therefore, we chose

features that are considered important by users. In order to choose such key features, we simply adopted

highlighted features provided by CNET.com assuming that they chose the features based on importance.

The highlighted features are listed in Table 6.2. We removed feature values that appear in less than five

products. Then, we tokenized the feature and feature value words, and we lowered the word tokens. The

statistics of the reviews and specifications data is shown in Table 6.1. While digital camera category has

more products, more reviews are written for mp3 player categories. Also, in general, users wrote more texts

per review for mp3 players than digital cameras. The number of highlighted features used for digital cameras

is similar to that for mp3 players while there are much more distinct feature values for digital cameras.

Table 6.2: CNET.com’s highlighted features for digital camera and MP3 player categories.

Digital Camera MP3 Player
Manufacturer Manufacturer
Product Type Product Type
Resolution Digital Storage
Digital Video Format Flash Memory Installed
Image Stabilizer Built-in Display – Diagonal Size
Lens System – Type Battery / Power – Battery
Memory / Storage Digital Player / Recorder
– Supported Mem. Cards – Supported Digital Audio Standards
Camera Flash Battery / Power
– Camera Flash – Mfr. Estimated Battery Life
Optical Sensor Type

In order to evaluate the performance of our methods for retrieving review sentences for a new or unpopular
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product, we perform the following experiment. To choose test products, which will be regarded as products

with no reviews, we selected top 50 products by the number of reviews in each category in order to obtain

reliable gold standard data. Please note that we did not select products that have their different versions

such as colors or editions, in order to ensure that the candidate products do not have the same reviews

as the test products. For each test product, Pz, all sentences of other products are regarded as candidate

sentences. Pretending that Pz does not have any reviews, we rank those candidate sentences and generate a

text with the first K word tokens, and we compare it with the actual reviews of Pz. We assume that if the

generated review text is similar to the actual reviews, it is a good review text for Pz. The average number

of reviews in the top 50 products is 78.5 and 152.2 for digital cameras and mp3 players, respectively. For

the probabilistic retrieval models, we use λ to control the amount of smoothing for language models, and we

empirically set it to 0.5 for both product categories, which showed the best performance.

6.7.2 Evaluation Metrics

To evaluate a quality of the length-K retrieved text based on actual reviews for the query, we face another

challenge: how should we measure the performance? We could consider using standard retrieval measures,

but neither NDCG nor MAP seems appropriate since we do not have multiple levels of judgments or even

binary judgments. We thus decided to measure the proximity between the retrieved text and the actual

reviews. Regarding the retrieved text as a summary for the query product, we can view our task as similar

to multiple document summarization, whose goal is to generate a summary of multiple documents. Thus,

we employ ROUGE evaluation method [57], which is a standard evaluation system for multiple document

summarization. In general, ROUGE evaluates the quality of an automatically generated summary by com-

paring it with one or more manually generated reference summaries. Assuming the actual reviews of the

query product are manually generated reference summaries, we can adopt ROUGE to evaluate the retrieved

sentences. Among various ROUGE metrics, we employ ROUGE-1 and ROUGE-2, which are unigram and

bigram matching metrics, respectively, and they have been shown to perform well for the task. We compute

precision, recall, and F1-score of each metric. For example, precision of ROUGE-n is defined as

ROUGE-n(r, s) =

∑
gramn∈S Countmatch(gramn)∑

gramn∈S Count(gramn)
(6.20)

where r and s are reference and retrieved summaries, respectively, gramn is n-gram text, Countmatch(gramn)

is the maximum number of n-grams co-occurring in the retrieved summary and a reference summary. When

there are multiple reference summaries available, they use the following evaluation formula.
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ROUGE-nmulti = maxiROUGE-n(ri, s) (6.21)

Please note that each of the precision, recall, and F1-score takes the maximum from the reference summaries.

More details about ROUGE can be found in [57].

However, the problem of ROUGE metrics is that it does not consider importance of words. All words

have different level of importance; for example, a word such as “of” is much less important than a word

“megapixel” since “of” appears too often in documents and does not carry useful information. If a retrieved

text contains many unimportant words, it may obtain a high score by ROUGE metrics, which is not desired.

Therefore, we also employ TFIDF cosine similarity, which considers word importance by Inverse Document

Frequency (IDF). TFIDF cosine similarity function between two documents is defined in equation (6.14).

While the formula measures similarity based on bag of words, bigram provides important information about

distance among words, so we adopt bigram-based TFIDF cosine similarity as well. Similar to ROUGE-

nmulti, we take a maximum from SIM(ri, s) among different reference summaries because we still evaluate

based on multiple reference summaries. For both ROUGE and SIM metrics, we use retrieved text length

100, 200, and 400, which reflect diverse users’ information needs.

6.8 Experiment Results

6.8.1 Qualitative Analysis

Table 6.3: Top ten sentences retrieved for Pentax *ist DS (Digital Camera) by Translation model with X=5.

(1) This was my first and my last Pentax .
(2) This pentax is a great value for money , and a nice entry
level dslr , compatible with most Pentax lens .

(3) I have found the Pentax DL to be high quality , with
great features .

(4) Nice job pentax .
(5) I have been a Pentax SLR user for years , beginning
with the SuperProgram , ZX-50 , and ZX-5n .

(6) When I bought it , I was in bankruptcy and the cheaper
Pentax came to me .

(7) Pentax have been making great lenses and cameras for
a long time , and this range is no exception .

(8) Great photos , color , ease of use , compact size ,
compatible with Pentax mount lenses .

(9) I had owned a great 35mm Pentax camera before that
took wonderful pictures , which , after 20 years went caput .

(10) Very smart Pentax .
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Table 6.4: Specifications for Pentax *ist DS. Note that some feature values are not available.

Feature Value
Manufacturer Pentax
Product Type Digital camera - SLR
Resolution 6.1 megapixels
Digital Video Format
Image Stabilizer
Lens System – Type 3 x x Zoom lens - 18 mm - 55 mm

- F/3.5-5.6 DA Pentax KAF
Memory / Storage SD Memory Card
– Supported Mem. Cards
Camera Flash Pop-up flash
– Camera Flash
Optical Sensor Type CCD

In order to see the usefulness of the sentences retrieved by our novel Translation model, we show the

top retrieved sentences for query products and compare them with the actual review sentences for the query

products. Table 6.3 lists top retrieved sentences for a product in each category, where the sentences are

ordered by their scores, and the specifications of the product is listed in Table 6.4.We set the number of

translating products to five, which is reasonable if we consider the computational cost of the model.

For the digital camera Pentax *ist DS, several top retrieved sentences such as (2) and (8) mention about

its compatibility with Pentax lenses. Surprisingly, there were several reviews for Pentax *ist DS that praise

its lens compatibility, and here are two actual examples from review sentences: “Plus the DS is backwards

compatible with all old Pentax lenses, which have a well-deserved reputation among photographers.” “I can

use my pile of old (and very old) Pentax lenses including the m42 lenses.” Also, the retrieved sentences

such as (7), (8), (9), and possibly (3) mention about Pentax’s great picture quality, which is supported by

the following actual review sentences: “Amazingly sharp lens.” “It has a much better lens package than the

Rebel and the base 20D kit.” Sentences (2) and (6) claim the product’s good value, which is again supported

by actual review sentences: “Better value than you think” “The camera is also cheaper than the comparable

Nikon and Canon.” The retrieved sentence such as (8) mentions about ease of use for the camera, and many

users actually complimented the camera on its ease of use, indeed. The supporting sentences are as follows:

“Very easy to use right out of the box.” “The controls are very easy to learn and are, for the most part,

very intuitive.” Meanwhile, the sentence (1) carries inconsistent opinion, which shows negative sentiment

on Pentax camera. Nevertheless, in a user’s perspective, who does not know much about Pentax *ist DS or

other Pentax cameras, the listed information would be highly informative especially if the camera has no or

few reviews. Although some of the retrieved sentences do not carry useful information, it is clear that some

other retrieved sentences are indeed useful.
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Our probabilistic retrieval models have a capability of retrieving relevant sentences for a specific feature.

For each of the probabilistic models, we can assume that the number of features F is one so that the score

functions compute only for one feature. Table 6.5 shows top retrieved sentences for the feature “Lens System

– Type” of Pentax *ist DS. As found in the top sentences for the whole product in Table 6.3, we can easily find

that all the sentences except (2) praise the lens compatibility of Pentax, indeed. In addition, all sentences

except (1) praise high quality of its lens, which is coherent with the top sentences for the whole product.

From the sentences, users can learn much about the given product’s lens such as other consumers’ general

sentiment and specific reasons why they like or dislike its lens.

Table 6.5: Top sentences retrieved by Translation model (X=5) specifically for the feature “Lens System –
Type” of Pentax *ist DS.

(1) This pentax is a great value for money , and a nice entry
level dslr , compatible with most Pentax lens .

(2) Pentax have been making great lenses and cameras for
a long time , and this range is no exception .

(3) Great photos , color , ease of use , compact size ,
compatible with Pentax mount lenses .

(4) The kit lens is better than what ships with some
competitors , and the camera is compatible with most
older Pentax lenses , making it possible to save hundreds
by buying used lenses rather than having to sink money
into new digital lenses .

(5) Compatibility with older Pentax lenses is a real bonus
too , as these are usually of very high quality and can be
picked up at good prices second-hand .

Manually finding relevant opinions for a query product or its specific feature is extremely time-consuming

for users; they need to find similar products by manually comparing specifications and extract relevant

and central sentences from all the reviews of the similar products, which may take too much time. Here,

we verified the automatically retrieved sentences can be indeed useful for users. In the next section, we

quantitatively compare our Translation model with other suggested methods.

6.8.2 Quantitative Evaluation

To retrieve review sentences that are likely to be written for a new or unpopular product, we employ

several methods. In order to see the effectiveness of a standard ad-hoc retrieval method, we employ

query likelihood (QL) language model approach [84], and we define the score function as score(t;R,Sz) =∑F
k=1

∏
w∈sz,k p(w|t), where p(w|t) is smoothed as in equation (6.10). We suggested a modified version of one

of the standard summarization tools, MEAD-SIM in formula (6.5), which considers both query-relevance and

centrality. We employ MEAD-SIM as one of the baseline methods, and we also show results from the basic
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Table 6.6: Unigram and bigram TFIDF cosine similarity @ K for Digital Camera and MP3 Player categories.

Category Model COS1@100 COS1@200 COS1@400 COS2@100 COS2@200 COS2@400
Digital QL 0.112 0.128 0.147 0.0185 0.0215 0.0257
Camera MEAD 0.131 0.124 0.141 0.0258 0.0204 0.0184

MEAD-SIM 0.136 0.130 0.158 0.0271 0.0226 0.0223
SpecGen 0.143 0.173 0.206 0.0230 0.0270 0.0291
ReviewSpecGen 0.171 0.208 0.231 0.0210 0.0244 0.0298
Translation 0.314†‡ 0.327†‡ 0.333†‡ 0.0736†‡ 0.0743†‡ 0.0794†‡

(increase %) (+131%) (+152%) (+111%) (+172%) (+229%) (+256%)
MP3 QL 0.090 0.99 0.118 0.0147 0.0159 0.0173
Player MEAD 0.089 0.078 0.091 0.0123 0.0128 0.0117

MEAD-SIM 0.131 0.136 0.145 0.0206 0.0197 0.0178
SpecGen 0.153 0.183 0.208 0.0225 0.0274 0.0294
ReviewSpecGen 0.206 0.227 0.253 0.0261 0.0270 0.0327
Translation 0.267†‡ 0.297†‡ 0.316†‡ 0.0458†‡ 0.0567†‡ 0.0649†‡

(increase %) (+104%) (+118%) (+118%) (+104%) (+188%) (+265%)
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MEAD in formula (6.4) to see the effect of query-relevance addition to MEAD; we set wc = 1 and wo = 0

since position score is inappropriate for reviews. We also introduced several probabilistic retrieval methods

for the task. Review and Specifications Generation model (ReviewSpecGen) considers both query-relevance

and centrality, so we use it as another baseline method. Specifications Generation model (SpecGen) focuses

on query-relevance, and we show its results to compare with ReviewSpecGen and QL. We then suggested our

novel Translation model (Translation). We tuned X to be 100 for digital cameras and 10 for mp3 players,

unless otherwise specified, which showed the best TFIDF cosine similarity values. The results from Transla-

tion model are mainly compared with the two baselines MEAD-SIM and ReviewSpecGen. † and ‡ are used

to mark if the improvement for Translation model is statistically (paired t-test with p=0.05) significant in

each measure from MEAD-SIM and ReviewSpecGen, respectively. We also record how much Translation

model improves MEAD-SIM in parentheses.

Table 6.6 shows TFIDF cosine similarity evaluation results for both digital cameras and mp3 players.

Both unigram (COS1) and bigram (COS2) measures are listed for the suggested methods. In general, mod-

els that exploit specifications as query (MEAD-SIM, SpecGen, ReviewSpecGen, and Translation) except

QL outperform MEAD, which does not compute query-relevance. QL outperforms MEAD in mp3 player

data set, but it does not outperform other models in both data sets, because it does not consider spec-

ifications similarity between products. MEAD-SIM outperforms MEAD in all cosine similarity measures

(12/12), which means that centrality alone cannot perform well. ReviewSpecGen adds centrality compu-

tation to SpecGen, and the results show that its centrality helps it outperform SpecGen in most measures

(9/12). ReviewSpecGen outperforms MEAD-SIM in all unigram measures (6/6) and most bigram measures

(5/6). Translation model significantly outperforms MEAD-SIM in all measures (12/12), and the average

performance increase percentage is 162%. It also significantly outperforms ReviewSpecGen in all measures

(12/12), which means that choosing products similar to the query product as translating products was more

effective than choosing only one product the candidate sentence belongs to. Translation model outperforms

other models especially in bigram measures, which means that Translation model retrieves more connected

fragments that are in the actual reviews.

We also evaluate retrieval results with ROUGE metrics. Although ROUGE does not consider importance

of words, it is able to compute recall, precision, and F1 score in both unigram (ROUGE1-R, ROUGE1-P,

and ROUGE1-F) and bigram (ROUGE2-R, ROUGE2-P, and ROUGE2-F) units. The ROUGE evaluation

results for mp3 players are shown in Table 6.7. QL outperforms MEAD in all measures, but it is outper-

formed by MEAD-SIM in all measures since QL does not consider specifications similarity between products.

SpecGen outperforms ReviewSpecGen in most measures (13/ 18) especially in bigram measures (9/9), which
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Figure 6.3: TFIDF cosine similarity evaluation results for Translation model with different number (X) of
translating products. Upper figures are for digital cameras, and lower figures are for mp3 players. Left
figures are results based on unigrams, and right figures are those base on bigrams.
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Table 6.7: Unigram and bigram ROUGE @ K for MP3 Players category.

K Model ROUGE1-R ROUGE1-P ROUGE1-F ROUGE2-R ROUGE2-P ROUGE2-F
QL 0.278 0.218 0.150 0.0545 0.0308 0.0297
MEAD 0.202 0.217 0.132 0.0364 0.0242 0.0227
MEAD-SIM 0.328 0.319 0.196 0.0615 0.0381 0.0367

100 SpecGen 0.303 0.299 0.191 0.0727 0.0480 0.0406
ReviewSpecGen 0.323 0.320 0.204 0.0650 0.0431 0.0378
Translation 0.369†‡ 0.375‡ 0.236†‡ 0.1151†‡ 0.0742†‡ 0.0634†‡

(increase %) (+11%) (+12%) (+20%) (+87%) (+95%) (+73%)
QL 0.384 0.213 0.166 0.0812 0.0264 0.0300
MEAD 0.266 0.171 0.127 0.0453 0.0186 0.0203
MEAD-SIM 0.434 0.266 0.201 0.0834 0.0290 0.0333

200 SpecGen 0.413 0.273 0.204 0.0913 0.0423 0.0395
ReviewSpecGen 0.411 0.267 0.197 0.0848 0.0324 0.0344
Translation 0.481†‡ 0.318†‡ 0.239†‡ 0.1582†‡ 0.0664†‡ 0.0657†‡

(increase %) (+11%) (+20%) (+19%) (+90%) (+129%) (+97%)
QL 0.501 0.186 0.175 0.1159 0.0205 0.0265
MEAD 0.370 0.154 0.141 0.0517 0.0111 0.0146
MEAD-SIM 0.560 0.224 0.210 0.1260 0.0207 0.0268

400 SpecGen 0.535 0.221 0.207 0.1228 0.0293 0.0342
ReviewSpecGen 0.546 0.221 0.204 0.1171 0.0254 0.0314
Translation 0.595†‡ 0.240†‡ 0.225†‡ 0.2112†‡ 0.0431†‡ 0.0542†‡

(increase %) (+6%) (+7%) (+7%) (+68%) (+108%) (+102%)
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is different from the TFIDF cosine similarity results; this means that the sentences retrieved by SpecGen

are more similar to actual reviews than those retrieved by ReviewSpecGen, but ReviewSpecGen retrieved

more “important” relevant words. Translation model outperforms all other models in all measures (18/18),

and the increase from MEAD-SIM and ReviewSpecGen is statistically significant in most measures (17/18

and 18/18, respectively). Similar to TFIDF cosine similarity results, the performance difference in bigram

measures is clearer than in unigram measures, which means Translation model retrieves bigger fragments

of actual reviews well. The increase in unigram ROUGE measures is not as big as that in unigram TFIDF

cosine similarity measures, which means that the number of relevant words from Translation model is not

very different from other models, but Translation model retrieves much more important relevant words.

We also evaluated retrieved sentences for digital cameras with ROUGE metrics. In general, Translation

model outperforms other models in all measures. More specifically, it significantly outperforms MEAD-SIM

and ReviewSpecGen in most measures (16/18 and 18/18, respectively). We do not list ROUGE evaluation

results for digital cameras since the other patterns are similar to those for mp3 players.

Overall, ROUGE evaluation results are similar to cosine similarity evaluation results in general. The

difference between the two metrics is that the TFIDF cosine similarity metric differentiates various models

more clearly since they consider importance of words while the ROUGE metric does not; TFIDF cosine

similarity metric prefers retrieved text that contains more important words, which is a desired property in

such evaluation. On the other hand, ROUGE metric considers various evaluation aspects such as recall,

precision, and F1 score, which can possibly help us analyze evaluation results in depth.

In order to reduce computation complexity of Translation model, we proposed to exploit X most promis-

ing products that are similar to the query product, instead of all products, under the assumption that similar

products are likely to have similar reviews. We performed experiments with different X values to find how

many translating products are needed to obtain reasonably good performance. The results are evaluated

with TFIDF cosine similarity @ K for unigrams and bigrams, and the results are shown in Figure 6.3.

Surprisingly, only a few translating products (e.g., ten) are enough to perform reasonably well especially

for mp3 players. These results mean that only a few “good” translating products are enough to translate

a candidate sentence well, and the “good” translating products may be selected by their similarity to the

query product.
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6.9 Conclusion and Future Work

In this work, we studied the problem of automatic relevant review text retrieval for products having no

reviews. Relevant review sentences for new or unpopular products can be very useful for consumers who

seek for relevant opinions, but no previous work has addressed this novel problem. We proposed several

methods to solve this problem, including summarization-based methods such as MEAD and MEAD-SIM

and probabilistic retrieval methods such as Specifications Generation model, Review and Specifications

Generation model, and Translation model. To evaluate relevance of retrieved opinion sentences in the

situation where human-labeled judgments are not available, we measured the proximity between the retrieved

text and the actual reviews of a query product. Experiment results show that our novel Translation model

indeed retrieves useful sentences and significantly outperforms the baseline methods.

There are limitations in this work. We proposed an automatic evaluation method for the retrieved opinion

sentence because manual evaluation is too expensive. However, the automatic evaluation methods do not

replace manual evaluation methods since the evaluation requires understanding of sophisticated sentences in

user’s perspective. In real e-commerce sites, new products sometimes contain completely new features and

feature values. However, our work cannot reliably predict opinions for new features or new feature values

that hardly appeared in the data. Also, time when reviews were written are not considered in our proposed

methods, but people’s standard changes as time goes by. For example, “5 megapixels” of image resolution

may be very nice 15 years ago, but it is not satisfying at this moment. We may need to consider time to

more accurately predict opinions for new products.

In this work, we used a predefined similarity function to compute similarity between products. Our

similarity function basically assigns the same weight to each feature in specifications, which is not ideal.

Instead of using the predefined one, we can also learn similarity metric between products. For example,

we can apply a metric learning technique in [106] to learn similarity metric for products. To generate the

training data, we can manually specify which products are actually similar. However, such manual labeling

effort may be too expensive as we need to consider multiple criteria across numerous products when we find

similar products. Instead, we can make an assumption, e.g., if user reviews are similar then products are

similar, where the review similarity can be measured with standard text similarity metrics such as TF-IDF

cosine similarity or BM25. Then, we use user reviews of products to learn product similarity in terms of

specifications as well as other product data such as product descriptions. In this way, we can automatically

learn which aspects of products should be considered more or less important when finding similar products.

We leave learning such similarity metric between products as our future work.

Our work opens up a new direction in text data mining and opinion analysis. The new problem of review
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text retrieval for new products can be studied from multiple perspectives. First, it can be regarded as a

summarization problem as the retrieved sentences need to be central across different reviews. Second, as

done in this work, it can also be regarded as a special retrieval problem with the goal of retrieving relevant

opinions with product specifications as a query. Finally, it can also be studied from the perspective of

collaborative filtering where we would leverage related products to recommend relevant “opinions” to new

products, which is a cold-start problem. All these are interesting future directions that can potentially lead

to even more accurate and more useful algorithms.
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Chapter 7

Conclusion

7.1 Summary

E-commerce has gradually changed the way of buying products in conjunction with the development of

Internet. However, user experience in current e-commerce systems is still far from the optimum. This disser-

tation systematically studies to enhance user experience in e-commerce with joint analysis of user-generated

content and product information. In order to assist users in discovering products, (1) we first proposed to

leverage user reviews to improve product search accuracy, and then, (2) we proposed to recommend products

via inference of implicit intent in social media text. In order to assist users in making purchase decisions,

(3) we jointly modeled user reviews and product specifications to augment product specifications with useful

knowledge, and (4) we retrieved opinion sentences for new products that do not have any reviews, through

joint analysis of user reviews and product specifications.

To improve accuracy for product retrieval, we jointly modeled user reviews and product descriptions

since user reviews often bridge vocabulary gap between a user query and product descriptions. The joint

model effectively bridged the vocabulary gap while it excluded noise in user reviews. Experiment results

indicated that the proposed approach significantly outperformed the state-of-the-art methods. This work

serves as the first systematic study of mobile app retrieval task.

To recommend products for social media text that contains implicit intent, we leveraged social media

text data to infer user intention. We first built parallel corpora that help us translate implicit intention text

into explicit intention text. Then, we inferred user intention in “user status text” using the parallel corpora,

and we retrieved products (mobile apps) that satisfy the inferred user intention. The experiment results

indicated that the proposed approach was effective and it outperformed the state-of-the-art methods. This

work serves as the first study of app recommendation based on social media text with implicit intention.

We jointly modeled user reviews and product specifications to generate augmented specifications so

that users can easily understand product specifications. We proposed a novel model that mines useful

information about product features from user reviews. The experiment results indicated that the model
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effectively retrieved opinion sentences for each product feature, inferred each feature’s importance, and

extracted special words for each product compared with other products.

To mine opinions for new products that do not have any reviews, we jointly analyzed user reviews

and product specifications. We proposed novel probabilistic models that leverage product specifications to

estimate similarity between the new product and candidate products. Then, the estimated similarity was

used to retrieve relevant opinions for the new product so that consumers can find useful discussions in the

opinions. The experiment results indicated that the proposed models indeed retrieved useful sentences and

significantly outperformed the baseline methods. This work serves as the first study of opinion retrieval for

new products.

Throughout this dissertation, we employed language model-based information retrieval techniques [113] to

mine useful knowledge in general. Language models have a property of representing text data in probability

distributions, and this property makes the language models versatile so that many probabilistic approaches

can be applied to the solutions. In this dissertation, we focused on probabilistic topic models to more

effectively mine useful knowledge.

In section 1.2, we discussed the challenges in joint analysis of user-generated content and product informa-

tion, such as vocabulary gap between two different types of text data, joint analysis with structured product

information, and noise in user-generated content. In general, we were able to overcome such challenges by

employing topic modeling techniques throughout this dissertation. Different people have their own preferred

vocabulary sets. In addition, ordinary people often use informal language in user reviews or social media

while product manufacturers often use formal language in order to establish trust in their products. Topic

models are able to capture word semantics in text corpora so that they can effectively bridge vocabulary

gap between different text data. By carefully designing topic models, we were also able to filter out noise in

user-generated content while we could take advantage of similarity between two different text data to model

topics. The technique we proposed is also generally applicable to other applications. For example, it can

analyze differences and similarities between two different text data with small adjustments. It is applied to

products in this dissertation, but it can also be directly applied to other entities such as politicians so that

we can align facts about the politicians with opinions about them.

We also applied topic modeling techniques to jointly analyze user-generated content and structured

product information. In order to model topics in unstructured text data and structured text data and to

align the topics between them, we extended the idea of semi-supervised topic models. We imposed prior

knowledge from product specifications to topics as prior probability distribution, and then we expanded the

topic words through user reviews to gain users’ useful knowledge about product features and the feature
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values. Through a hierarchy between features and their values, we could effectively mine useful opinions.

We tested our idea in the domain of e-commerce, but it can also be directly or indirectly applied to other

domains. The technique is able to jointly analyze unstructured text data and structured text data, where

the structured text data consist of key-value pairs.

7.2 Future Directions

There can be many possible future directions for this dissertation. Various future directions for each line of

work are already discussed in the corresponding chapter, and we further discuss common future directions

here. Throughout this dissertation, we studied joint analysis of user-generated content and product infor-

mation. While such joint analysis was shown to be quite effective, there may be other kinds of data that

also need to be analyzed in conjunction with user-generated content and product information. For example,

when we analyze user reviews to mine useful knowledge from them, we may need to consider the time when

the user-generated content was generated because people’s opinions may change as time goes by. With such

temporal analysis, we can more accurately analyze not only the past data but also the future data. As

discussed in section 6.9, “5 megapixels” of image resolutions was satisfying 15 years ago, but not anymore.

Considering time in joint analysis would enable us to mine more accurate and insightful knowledge from

data.

In this dissertation, we performed evaluation based on relevance. That is, when we evaluate the retrieved

texts/entities, we measured the accuracy of the retrieved texts/entities based on their relevance to the

actual relevant texts/entities. While such evaluation measures how relevant the retrieved information is

to the actual relevant information, they do not consider the retrieved information’s utility in the user’s

perspective. For example, users consider multiple criteria such as relevance, value, and brand when they

search for products. Ranking products based on those criteria would be more useful to users. To develop

such systems, for example, we can borrow concepts such as utility and surplus from economics as in [54].

Through optimization of utility, we can learn what aspects of products users value more so that we can rank

products based on the learned criteria. Such idea can also be applied to our work with additional product

data such as price and market share. Price information is usually available, and we can sort products by

“best selling” in e-commerce sites to estimate market share of them, for example. Then, we can automatically

learn what features in specifications and what other criteria are more important in the user’s perspective.

Search results from such system will help users find more valuable products to them.

Our work that assists users in discovering products can further be studied for virtual assistants. We
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studied product search and recommendation given a query, which is made by a user. Interestingly, users

make queries to virtual assistants as if they chat with robots, so the queries are likely to be informal. The

vocabulary used in such informal queries overlap much with user-generated content such as user reviews

and social media text data. Hence, analysis of queries in virtual assistants may benefit from joint analysis

with user-generated content, especially when there does not exist enough training data due to the cold-start

problem.

We leave all these interesting problems as future work. We created multiple test collections and made

them publicly available so that further related studies are enabled.
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